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ABSTRACT

We present an algorithm for active learning (adaptive selec-

tion of training data) within the context of semi-supervised

multi-task classifier design. The semi-supervised multi-task

classifier exploits manifold information provided by the unla-

beled data, while also leveraging relevant information across

multiple data sets. The active-learning component defines

which data would be most informative to classifier design if

the associated labels are acquired. The framework is demon-

strated through application to a real landmine detection prob-

lem.

Index Terms— Active learning, semi-supervised learn-

ing, multi-task learning, graph, logistic regression

1. INTRODUCTION

Supervised learning has proven to be an effective technique

when sufficient and appropriate labeled data are available.

Unfortunately, sufficient labeled data are often not available,

particularly when label acquisition is expensive. However, in

practice one typically has performed many previous classifi-

cation “tasks” in the past. If data (labeled and unlabeled) from

previous tasks can be shared for a new task, the classification

performance for the new task may be improved even in the

face of limited labeled data. However, not all of the previous

tasks may be related to the new task, and the technical chal-

lenge involves inferring the inter-relationships between the

multiple data sets, such that the sharing of data across mul-

tiple tasks is performed appropriately. This problem is often

termed multi-task learning.

Algorithm training based only on labeled data is referred

to as supervised learning, while learning based only on un-

labeled data is termed unsupervised learning. The concept

of integrating all available data, labeled and unlabeled, when

training a classifier is typically referred to as semi-supervised

learning. Semi-supervised learning [1, 2, 3, 4] and multi-task

learning (MTL) [5, 6, 7, 8] have been investigated separately

by many researchers. In [9] these two techniques were inte-

grated.

However, the labeled data in [9] were selected randomly.

In many sensing applications the acquisition of unlabeled data

is relatively inexpensive, while acquiring labels on a subset

of the data may be expensive (e.g., requiring a human analyst

or near-range sensors). Active learning is a framework that

uses information-theoretic measures to define those data that

are most informative for labeling [10, 11, 12, 13], allowing

one to optimize labeling expenses. In this paper we integrate

active learning with semi-supervised MTL, building upon the

algorithm in [9].

Below we provide a brief review of the semi-supervised

MTL framework, and then demonstrate how it may be ex-

tended to perform active acquisition of the labeled data. Ex-

ample results are provided for a real sensing example.

2. SEMI-SUPERVISED MODEL

Let G = (X ,W) be a weighted graph such that X = {x1,

x2, · · · , xn} is a set of vertices that coincide with the data

points in a data manifold, and W = [wij ]n×n is the affinity

matrix with the (i, j)-th element wij indicating the immediate

affinity between data points xi and xj . Following [2, 3], wij

is defined as wij = exp(−0.5 ‖xi − xj‖2/σ2
i ), where ‖ · ‖

is the Euclidean norm and σi > 0 (techniques for defining σi

are discussed in [9]).

A Markov random walk on graph G = (X ,W) is char-

acterized by a matrix of one-step transition probabilities A =
[aij ]n×n, where aij is the probability of transiting from xi

to xj via a single step and is given by aij = wij�n
k=1 wik

[14].

Let B = [bij ]n×n = At; then (i, j)-th element bij represents

the probability of transiting from xi to xj in t steps. Note

that both the labeled and unlabeled data are used to define the

random-walk matrix (no labels are used above), and therefore

the model is semi-supervised.

Let p∗(yi|xi, θ) be a base classifier parameterized by θ,

which gives the probability of class label yi of data point

xi. The base classifier can be implemented by any param-

eterized probabilistic classifier. For binary classification with

y ∈ {−1, 1}, the base classifier can be chosen as a logistic

regression

p∗(yi = 1|xi,θ) =
1

1 + exp[−yiθT xi]
(1)

where a constant element 1 is assumed to be prefixed to each

x(the prefixed x is still denoted as x for notational simplicity),

and thus the first element in θ is a bias term.
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Let p(yi|Nt(xi), θ) denote a neighborhood-based classi-

fier parameterized by θ, representing the probability of class

label yi for xi, given the neighborhood of xi. The proposed

semi-supervised classifier is defined as a mixture

p(yi|Nt(xi), θ) =
∑n

j=1bij p∗(yi|xj , θ) (2)

Let L ⊆ {1, 2, · · · , n} denote the index set of labeled data

in X . The neighborhood-conditioned likelihood function is

written as

p
({yi, i ∈ L}|{Nt(xi) : i ∈ L}, θ)

=
∏
i∈L

p(yi|Nt(xi), θ) =
∏
i∈L

n∑
j=1

bij p∗(yi|xj , θ) (3)

3. THE SEMI-SUPERVISED MTL FRAMEWORK

Suppose we are given M tasks, defined by M partially labeled

data sets

Dm = {xm
i : i = 1, 2, · · · , nm} ∪ {ym

i : i ∈ Lm}

for m = 1, · · · ,M , where ym
i is the class label of xm

i and

Lm ⊂ {1, 2, · · · , nm} is the index set of labeled data in task

m. We consider M semi-supervised classifiers, parameter-

ized by θm, m = 1, · · · ,M , with θm responsible for task

m. The M classifiers are coupled by a prior joint distribution

over their parameters

p(θ1, · · · ,θM ) =
∏M

m=1 p(θm|θ1, · · · , θm−1) (4)

with the conditional distributions in the product defined by

p(θm|θ1, · · · ,θm−1)
= 1

α+m−1

[
αp(θm|Υ) +

∑m−1
l=1 N(θm; θl, η

2I)
]

(5)

where α > 0, p(θm|Υ) is a base distribution parameterized

by Υ, N( · ;θl, η
2I) is a normal distribution with mean θl and

covariance matrix η2I.

Each normal distribution represents the prior transferred

from a previous task; it is the meta-knowledge indicating how

the present task should be learned, based on the experience

from a previous task. It is through these normal distributions

that information sharing between tasks is enforced.

The base distribution represents the baseline prior, which

is exclusively used when there are no previous tasks available,

as is seen from (5) by setting m = 1. When there are m − 1
previous tasks, one uses the baseline prior with probability

α
α+m−1 , and uses the prior transferred from each of the m −
1 previous tasks with probability 1

α+m−1 . The α balances

the baseline prior and the priors imposed by previous tasks.

The role of baseline prior decreases as m increases, which is

in agreement with our intuition, since the information from

previous tasks increase with m. This model is a simplified

version of the Dirichlet process [15].

Assuming that, given {θ1, · · · , θM}, the class labels of

different tasks are conditionally independent, the joint likeli-

hood function over all tasks can be written as

p
({ym

i , i ∈ Lm}M
m=1|{Nt(xm

i ) : i ∈ Lm}M
m=1, {θm}M

m=1

)
=

∏M
m=1

∏
i∈Lm

∑nm

j=1 bm
ij p∗(ym

i |xm
j , θm) (6)

where the m-th term in the product is taken from (3), with the

superscript m indicating the task index. Note that the neigh-

borhoods are built for each task independently of other tasks,

thus a random walk is always restricted to the same task (the

one where the starting data point belongs) and can never tra-

verse multiple tasks. From (4), (5), and (6), the logarithm of

the joint posterior of {θ1, · · · , θM} can be written as

�MAP(θ1, · · · , θM )
= ln p

({θm}M
m=1|{ym

i ,i∈Lm}M
m=1, {Nt(xm

i ) : i∈Lm}M
m=1

)
=

∑M
m=1

{
ln

[
αp(θm|Υ) +

∑m−1
l=1 N(θm;θl, η

2I)
]

+
∑

i∈Lm
ln

∑nm

j=1 bm
ij p∗(ym

i |xm
j ,θm)

}
(7)

The parameters {θ1, · · · , θM} are sought to maximize the

log-posterior, which is equivalent to simultaneously maximiz-

ing the prior in (4) and the likelihood function in (6).

4. ACTIVE LEARNING

We take an information-theoretic approach to identifying the

data locations at which the labels would be most informative

to the classifier parameters. Our approach is based on use

of Fisher information [12, 16], which is related to previous

uses of active learning [11, 10] as applied to purely super-

vised single task learning models. The Fisher information

involves the log-likelihood; as a result the prior is excluded

from the calculation. Since the tasks are connected through

the prior, this implies that calculation of Fisher information

can be performed for each individual task separately (not in-

dependently though, since the true parameters are replaced

by their most recent estimates, as seen below, which are cou-

pled by the prior). Therefore, we drop each variable’s depen-

dence on task index m, for notational simplicity. The data

log-likelihood is obtained by taking the logarithm of (3),

�(θ)
Def.
= ln p

({yi, i ∈ L}|{Nt(xi) : i ∈ L},θ)
=

∑
i∈L

ln
n∑

j=1

bij p∗(yi|xj , θ) (8)

where the base classifier is assumed as above to be a logistic-

regression classifier. By definition [16], the Fisher informa-

tion matrix (FIM) for the data likelihood is

FIM
{
p
({yi, i ∈ L}|{Nt(xi) : i ∈ L},θ)}

= E{yi}i∈L

[
∂�i(θ)

∂θ

] [
∂�i(θ)

∂θ

]T
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=
∑
i∈L

Eyi

[∑n
j=1bijp

∗(yj =yi|xj , θ)p∗(yj =−yi|xj , θ)yixj∑n
k=1 bikp∗(yk =yi|xk, θ)

]

×
[∑n

j=1 bijp
∗(yj = yi|xj , θ)p∗(yj = −yi|xj , θ)yixj∑n

k=1 bikp∗(yk = yi|xk, θ)

]T

=
∑
i∈L

zizT
i

γi
(9)

where

zi
Def.
=

n∑
j=1

bijp
∗(yj = 1|xj , θ)p∗(yj = −1|xj , θ)xj (10)

γi
Def.
=

n∑
k=1

bikp∗(yj =1|xk,θ)
n∑

k=1

bikp∗(yj =−1|xk, θ) (11)

Assume that x∗ ∈ {x1, · · · ,xn}\L is a newly labeled sample

and added to the labeled set, so L changes to L̃. The Fisher

information matrix changes to

FIM
{

p
({yi, i ∈ L̃}|{Nt(xi) : i ∈ L̃}, θ)}

=
∑
i∈L

zizT
i

γi
+

z∗zT
∗

γ∗
(12)

The ratio of the determinants (one of several possible

measures [12], related to the entropy under a Gaussian ap-

proximation for the posterior for the model parameters) of the

old and new FIMs is

ψ(xj) =
det

[∑
i∈L

ziz
T
i

γi
+ z∗zT

∗
γ∗

]
det

[∑
i∈L

zizT
i

γi

]
=

⎛⎝1 +
1
γ∗

zT
∗

[∑
i∈L

zizT
i

γi

]−1

z∗

⎞⎠ (13)

which we employ as our selection criterion in identifying

the most informative data sample for labeling. The criterion

ψ(xj) is calculated for all xj ∈ {x1, · · · ,xn} \ L, and the

one with the maximum is the most informative data location

to obtain a label. Formally, the active semi-supervised MTL

procedure is as follows.

• Initially select few label data for each task;

• Compute the information gain ψ(xj) through (13);

• Search the next optimal sample;

• Re-train the parameters for all tasks on semi-supervised

MTL framework;

• Go to next task if ψ(xj) goes to very small.

The true value of θ required in calculating z and γ is re-

placed with the most recent update of the parameters, follow-

ing the strategy taken in [10, 12]. To the best of our knowl-

edge, this is the first use of active learning in an MTL setting,

and we are also considering a semi-supervised model.

5. EXPERIMENTAL RESULTS

We consider a remote sensing problem based on data col-

lected from real landmine fields1. In this problem there are

a total of 19 sets of data, collected from various landmine

fields (with inert landmine simulants). Each data point is

represented by a 9-dimensional feature vector extracted from

synthetic aperture radar images. Since this is a detection prob-

lem, the class labels are binary, with 1 indicating landmine

and 0 indicating clutter (false alarm).

As opposed to the setting in [9], where it is assumed that

labeled data from the 19 data sets are available simultane-

ously, we here assume the much more realistic case for which

labeled data are acquired sequentially within one data set

(task) at one time. Once the process of label acquisition in

a given environment is completed, that environment is not

revisited to acquire new labeled data.

Each of the 19 data sets defines a task, in which we aim

to find landmines with a minimum number of false alarms.

Of the 19 data sets, 1-10 are collected at foliated regions and

11-19 are collected at regions that are bare earth or desert.

We expect fewer new labeled data when considering a new

task for which environmental conditions stay unchanged from

previous tasks (but this is inferred by the algorithm, and not

imposed by the user).

In the experiment both labeled and unlabeled data are

used in training the algorithm. After training, the algorithm

is tested on the unlabeled data to calculate the area under

ROC curve (AUC) for each data set. We compare the active-

learning results with AUC results obtained using random

selection of labeled data. For the case where the labeled data

are randomly selected, we perform 20 independent trials, and

compute the mean as well as error bars of AUC from the

trials. Since the data sets are acquired sequentially, the results

are presented as AUC as a function of the number of tasks

from which labeled data are acquired (the ordering of the

tasks is arbitrary; the task order considered here was selected

as to make a point on the number of labels actively acquired,

as discussed further below).

We observe from the results in Figure 1 that active learn-

ing performs much better than random selection for a small

number of data sets (tasks). As discussed below, the total

number of labels used in random selection of labels is the

same as that used for active learning. When the number of

tasks increases, the benefit of active learning diminishes since

the scarcity of labeled data is overcome via multi-task learn-

ing.

In Figure 2 we plot the number of labeled data for each

task, as a function of task index. For the active-learning algo-

rithm the total number of labeled data is n = 174, across all

19 tasks (this is determined adaptively, by the proposed algo-

rithm). For the random selection of labeled data, the data from

1The data from the landmine example are available at

www.ece.duke.edu/ lcarin/LandmineData.zip
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Fig. 1. Performance of active learning for semi-supervised

MTL algorithm in comparison to semi-supervised MTL with

randomly-selected labeled data. The horizontal axis is the

number of tasks from which labeled data are acquired. The

vertical axis is the AUC averaged over the 19 tasks.

all 19 tasks are put together, and 174 samples are selected at

random for labeling; therefore, the number of labels acquired

per task is not constant (the data in Figure 2, for random selec-

tion, represents one example). For the active-learning results

in Figure 2, note the big jump in the number of labeled data

at task k = 11. Recall from above that data sets 1-10 are

from generally foliated regions and data sets 11-19 are from

regions that are generally bare earth or desert. Therefore, the

jump in Figure 2 at k = 11 is consistent with expectations

based on the properties of the environments.
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Fig. 2. Number of labeled data using active learning in com-

parison to number of labeled data with random selection; for

the latter, this is one random example.

6. CONCLUSIONS

We have presented an active learning algorithm for semi-
supervised MTL. The proposed algorithm actively and se-
quentially acquires the labels of the most informative data
from each task. Experimental results on a real landmine de-
tection problem show that the active acquisition of labeled

data yields promising results.
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