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ABSTRACT 

 
This paper presents a novel unified view of a wide variety of 
objective functions suitable for discriminative training applied to 
sequential pattern recognition problems, such as automatic speech 
recognition. Focusing on a central component of conventional 
objective functions, the sum of modified joint probabilities of 
observations and strings, the analysis generalizes these objective 
functions by weighting each term in the sum by an important 
function, the negative exponential of difference measure between 
strings. The interesting and valuable results of this investigation 
are highlighted in a comprehensive relationship chart that covers 
all of the common approaches (Maximum Mutual Information, 
Minimum Classification Error, Minimum Phone/Word Error), as 
well as corresponding novel generalizations and modifications of 
those approaches.  

Index Terms— Automatic speech recognition, discriminative 
training, generalized objective function, negative exponential 
function, Laplace-Stieltjes transform 
 

1. INTRODUCTION 
 

It is currently well known that discriminative training can 
effectively improve the performance of sequential pattern 
recognition [1], as exemplified by state of the art speech 
recognition. Various approaches to discriminative training have 
been studied in order to increase performance. Common successful 
approaches include Maximum Mutual Information (MMI) [2], 
Minimum Classification Error (MCE) [3], Minimum Phone/Word 
Error (MPE/MWE) [4], and their modifications. 

Each approach is primarily characterized by its definition of 
objective function. For example, the MMI objective function is 
defined so as to maximize the mutual information between 
observations and their corresponding strings, the MCE objective 
function directly addresses the notion of discriminating between 
correct and incorrect strings, and the MPE/MWE objective 
function is intended to minimize classification error weighted by 
an accuracy/error count that is measured at an arbitrary grain size, 
such as word, phoneme, phoneme-frame pair [5], etc. 

Many of these objective functions become very similar to each 
other in the context of large vocabulary continuous speech 
recognition (LVCSR) [6]. For instance, comparing MMI and MCE 
with a linear loss function, the major implementational difference  
only concerns whether or not a competitor lattice or N-best list can 
include the correct string. Here we re-examine conventional 

formulations of discriminative objective functions. The result of 
this study is not only a new perspective on the commonality 
among the formulations, but the derivation of original and, we 
believe, promising approaches to discriminative training. 

The novel unified view described in this study is based on a 
family of element functions, in terms of which most conventional 
objective functions and their modifications are commonly 
constructed. This analysis establishes the existence of a broader 
class of objective functions, allowing the construction of novel 
criteria using the same element functions with slightly different 
settings. An interesting result from these investigations is that the 
Laplace-Stieltjes transform (LST) of the cumulative error-count 
distribution can be naturally derived from a fractional form of the 
element functions; the LST can then be used to generate a 
generalized function family that includes the MPE/MWE objective 
function. The essential results of this comprehensive new 
framework are highlighted in a relationship chart that covers MMI, 
MCE, MPE/MWE, as well as corresponding novel generalizations 
and modifications of those approaches (see Figure 2). 

This paper is organized as follows: Section 2 introduces a 
family of element functions based on the negative exponential 
function of difference measure. Section 3 proves that simple 
fractional forms of element functions can construct most 
conventional objective functions. Section 4 demonstrates that 
novel generalized objective functions can also be constructed in 
terms of the element functions. 
 

2. NEGATIVE EXPONENTIAL OF DIFFERENCE 
MEASURE AND AN ELEMENT FUNCTION FAMILY 

 
We consider a set of strings of symbols, such as linguistic symbols 
(phonemes, words, etc.), and introduce a negative exponential 
function of the difference measure 1 2( , )S S between two strings 

1S  and 2S  with the exponential decay factor : 

 1 2exp( ( , )).S S  (1) 

Most typically, the symbol edit distance (a.k.a. Levenshtein 
distance) between strings is applicable to 1 2( , )S S . When 1S  
and 2S  are the “correct” and “incorrect” strings, respectively, the 
edit distance can be regarded as the “error count.” Assuming that 
the two strings are associated with a common sequence of 
observation units, a type of symbol-unit error count, e.g. “phone 
frame error” count [5], can also be used. Although this paper 
focuses on error count related measures, the difference measure, in 
general, does not necessarily have to correspond directly to the 
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error count. We can interpret Eq. (1) as meaning that the opposite 
of difference measure, which thus corresponds to similarity, is 
mapped into a probability-like (0,1] measure (when 0 ). 

Now, we take the case of LVCSR, and assume there is a pair 
( , )r rX S  of an acoustic observation sequence and its correctly 
transcribed string, and a lattice or N-best represented set 

| 1,2,3,kS k  of speech-recognized strings for rX . We 
can then define a family of -parameterized functions by the sum 
of modified joint probability densities of rX  and kS , each term of 
which is weighted by the negative exponential of difference 
measure between correct and recognized strings, 

 
( , ) ( ) ( | ) exp( ( , ))

( , ) exp( ),

L Ar r k r k r k

k

r k k

k

X S P S p X S S S

p X S
(2) 

where ,  and  are a set of acoustic ( A ) and language 
( L ) model parameters, scaling factor for ( )L kP S , and density 
smoothing factor, respectively, and ( , )r kS S  is shortened into k . 

This simple family of functions, in fact, forms a principal set of 
elements for several types of discriminative objective functions. 
Henceforth, we refer generically to each member function of this 
family as -probability or psi-probability, standing for “pseudo 
( ) probability.” 
 

3. REPRESENTATION OF CONVENTIONAL 
OBJECTIVE FUNCTIONS USING 

PSI-PROBABILITIES 
 

In this section, we prove that several types of conventional 
discriminative objective functions, including MMI, MCE, 
MPE/MWE, and well-known modifications thereof, can be 
constructed using -probabilities. In the following, all types of 
objective functions represented with -probabilities are defined to 
be maximized, for the sake of formal consistency. Namely, some 
functions in the formulations might be negated or inverted if they 
are originally defined to be minimized. Also note that the objective 
functions in this paper are defined w.r.t. a single observation 
sequence, and that each criterion can be immediately extended to 
deal with an overall set of observation sequences.  
 
3.1. Maximum Mutual Information (MMI) 
 
MMI training [2] maximizes the mutual information between rX  
and rS  by means of the objective function, 

 
( , )log log ( , ).

( , )
r r

MMI r
r k

k

p X S
F X

p X S
 (3) 

Note that, as defined in Eq. (2), the scaling and smoothing factors 
are already involved in ( , )r kp X S . We can then describe the 
function equivalent to ( , )MMI rF X  using two extreme 
expressions of -probability: 

 0 ( , )exp( 0 ) ( , )r k k r k

k k

p X S p X S  (4) 

and 
 lim ( , )exp( ) ( , )r k k r r

k

p X S p X S  (5) 

as  

 
0

( , ) ( , ).
( , )
r r

MMI r
r k

k

p X S
F X

p X S
 (6) 

This formulation can easily be extended to the “boosted” version 
of MMI (Boosted MMI [7]): 

 
( )

( , ) ( , ).
( , ) exp( )

r r
bMMI r

r k k
k

p X S
F X

p X S
 (7) 

 
3.2. Minimum Classification Error (MCE) 
 
MCE training is directly aimed at discriminating rS  from the set 
of incorrect strings, all of which are elements of the overall set  
of recognized strings. The framework of MCE involves a variety 
of formulations for objective functions. We here assume one of the 
formulations of misclassification measure dr(Xr, ) suitable for 
LVCSR [3], defined in terms of log-likelihood based discriminant 
functions  ( , ) log( ( ) ( | ))L Ak r k r kX P S p X S , and define 

( , )MCE rF X  as a core part in the formulation of the 
misclassification measure, 

 
,

,

1

( , )

| 0

| 0

1( , ) ( , ) log

( )1 log log
( )

1 log ( , ) log ,

k

k

rXkr r r r

k

r k
k

r r

MCE r

d X X e
C

p X S
C

p X S

F X C

 (8) 

where C is the cardinal number of a set rS . The final form 
of the MCE objective function is realized by a (possibly linear) 
loss function that takes ( , )r rd X  as its input. The direct 
expression of the MCE objective function cannot be derived by 
using the -probabilities alone. Instead, the function equivalent to 
the inverse of ( , )MCE rF X ,  a core part in ( , )r rd X , is derived 
as 

 0

0

( , ) 1 .
( , ) ( , ) ( , )

r r

r k r r MCE r
k

p X S
p X S p X S F X

 (9) 

 
3.3. Minimum Phone/Word Error (MPE/MWE) 
 
MPE/MWE training [4] minimizes classification error weighted by 
an accuracy/error count that is measured at an arbitrary grain size, 
such as word, phoneme, phoneme-frame pair, etc. Although the 
original definition of the MPE/MWE objective function is based 
on a raw accuracy count, we here employ another equivalent 
formulation, based on a difference measure, such as the raw error 
count, 

 
( , )

( , ) ,
( , )

r k k
k

MPE r
r k

k

p X S
F X

p X S
 (10) 

or, in other words, the model-based expectation of error count over 
the set  of recognized strings. This expectation can also be seen 
as the pivot for MPE/MWE learning based on the derivative of the 
expression: kS  will be treated positively/negatively if k  is 
smaller/larger than the expected error [8]. Even though Eq. (10) 
explicitly involves the linear count of errors, which is entirely 

1634



absent from the MMI and MCE formulations, the -probability 
based formulation can cover such a case by introducing the partial 
derivative of -probability w.r.t. , 

 ( , ) k
r k k

k

p X S e  (11) 

as 

 0

0

( , )
( , ),

( , )
r k k

k
MPE r

r k
k

p X S
F X

p X S
 (12) 

and its boosted version (Boosted MPE) 

 
( )

( )

( , ) exp( )

( , ) exp( )

( , ).

r k k k
k

r k k
k

bMPE r

p X S

p X S

F X

 (13) 

 
4. GENERALIZED VERSIONS OF 

DISCIMINATIVE OBJECTIVE FUNCTIONS 
 

As proved in the previous section, -probabilities can be used to 
formulate several common discriminative objective functions. This 
section describes natural extensions of the -probability based 
formulations, leading to novel generalized objective functions. The 
conventional and generalized functions discussed in this paper are 
summarized in a comprehensive relationship chart. 
 
4.1. Generalized MMI/MCE and Maximum String Similarity 
 
The negative exponential weight in -probability decays 

( , )r kp X S  according to the difference measure with decay rate 
. The arbitrary choice of produces several differently 

decaying -probabilities. We can derive some generalized 
objective functions by making use of these characteristics. 

For example, a fractional form, a rapidly decaying -
probability over a slowly decaying or growing one, provides a 
generalized type of MMI objective function: 

 
1

1

2
2

1 2
( , )

    ( ).
( , )

k

k

r k
k

r k
k

p X S e

p X S e
 (14) 

Here, the “correct” strings are defined in a loose, flexible sense, as 
the weighted sum in the numerator also includes the densities for 
“nearly correct” strings. And, in the denominator, the densities are 
boosted/reduced for strings that are not even close. In the limit of 

1 , Eq. (14) approaches the ordinary ( 2 0 ) or Boosted 
( 2 0 ) MMI (Eqs. (6) and (7)). A similar generalization 
can be also made for MCE: 

 

1

2 3

1

2 3

1 3 2

( , )

( , ) ( , )
( ).

k

k k

r k
k

r k r k
k k

p X S e

p X S e p X S e
 (15) 

In the denominator of Eq. (15), the densities for the loosely 
defined “correct” strings are subtracted from the boosted/reduced 
sum. The expression approaches MCE (Eq. (9)) in the limit of 

1  and 3  with 2 0 . Previous work by the 

authors has demonstrated the benefits of using a set of correct 
strings rather than a single correct string [3]. The above 
generalizations can reasonably be expected to yield similar 
benefits. The effect of exponential weight in these generalized 
objective functions is depicted in Figure 1. 

Another interpretation of Eq. (14) is provided by rewriting it as 

 

1

2

1 2,  2

( , ) ( , )

( , ) ( , )
( = = ).

k k k

k k

r k r k
k k

r k r k
k k

p X S e p X S e e

p X S e p X S e  (16) 

Setting 0  immediately leads to 

 
0

( , )exp( )
.

( , )
r k k

k

r k
k

p X S

p X S
 (17) 

This corresponds to the expectation of the negative exponential of 
difference measure, the maximization of which maximizes the 
expectation of a similarity measure between correct and 
recognized strings (Maximum String Similarity), using ordinary 
(Eq. (17)) and boosted (Eq. (16)) densities. Since 1 exp( )k  
becomes close to k  for a sufficiently small , Maximum 
String Similarity is expected to work similarly to minimizing the 
expectation of difference measure, i.e. MPE/MWE. In general, the 
concavity of exp( )k  lowers the expected error (the pivot for 
positive/negative string handling during learning) compared to 
conventional MPE/MWE (see Section 3.3) 

As regards the computation of these functions over a lattice, 
the -probability for each arc/node can be computed via the 
ordinary forward-backward algorithm, as long as the negative 
exponential of difference measure for each string in the lattice can 
be factorized into a local factor for each arc/node. Numerical 
lattice subtraction [6] can be used to implement the Generalized 
MCE criterion proposed in Eq. (15). 

We also note that, in the exponential function based 
formulations presented in this section, we may adaptively set the 
decay factor , which closely relates to novel interpretations of 
the large margin approach that have recently been studied [9,10]. 
 
4.2. Generalized Minimum Error Moment 
 
Eq. (17) also equals the Laplace-Stieltjes transform (LST) of a 
cumulative distribution of the difference measure, e.g. error count, 
over the set   of recognized strings: 

The “correct” string(s) are excluded
from competitors (MCE).

1

3 2 0

2 0

2exp( )

1exp( )

2 3exp( ) exp( )

Loose definition of
“correct” strings (MMI/MCE). 

Figure 1.  The effect of negative exponential weight in general-
ized MMI and MCE objective functions. 

1635



 |
( , )

( ) ,
( , )

k
r k

k

r k
k

p X S

p X S
 (18) 

 
0

0

LST[ ( )] ( )

( , )exp( )
.

( , )
r k k

k

r k
k

e d

p X S

p X S

�

 (19) 

By means of the property of LST, 0  can generate the origin 
moment of an arbitrary order n , leading to a generalized objective 
function, the maximization of which minimizes the (boosted) 
moment of an arbitrary order n  (Generalized Minimum Error 
Moment): 

 
( )

( )1

( )

( , )
( 1) .

( , )

k

k

nn r k k
n k

r k
k

p X S e

p X S e
 (20) 

In the case of 1n , Eq. (20) equals the ordinary ( 0 ) or 
boosted ( 0 ) MPE/MWE (Eqs. (12) and (13)). Setting 1n  
enables a novel type of discriminative training that uses a higher 
order moment over a lattice or an N-best list. 

As for the computation of Eq. (20) over a lattice, foundational 
work with MPE/MWE [4] has presented an elegant solution to this 
for the specific case of 1n , where ( , ) nn

k r kS S  for each 
kS in the lattice can be additively partitioned into local 

components for each arc/node. On the other hand, recent work by 
the authors proposing an error-indexed forward-backward 
algorithm [8] enables the computation for an arbitrary order n . 

Figure 2 illustrates the relationships between the conventional 
and generalized discriminative functions, summarizing the novel 
unified view centered on the use of -probability, itself based on 
the negative exponential of string difference. 
 

5. CONCLUSION 
 

A novel unified view for discriminative objective functions has 
been presented here. A family of element functions based on the 

negative exponential of difference measure has been proved to 
broadly cover conventional objective functions, as well as their 
generalizations. Future work will include a series of experimental 
evaluations on the generalized functions proposed in this paper.  
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Figure 2.  A comprehensive relationship among discriminative objective functions. Double-lined boxes denote novel functions 
proposed in this paper. Each number in parenthesis provides a link to the corresponding equation in the body text.  
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