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ABSTRACT
We present a framework for audio background modeling of complex
and unstructured audio environments. The determination of back-
ground audio is important for understanding and predicting the am-
bient context surrounding an agent, both human and machine. Our
method extends the online adaptive Gaussian Mixture model tech-
nique to model variations in the background audio. We propose
a method for learning the initial background model using a semi-
supervised learning approach. This information is then integrated
into the online background determination process, providing us with
a more complete background model. We show that we can utilize
both labeled and unlabeled data to improve audio classification per-
formance. By incorporating prediction models in the determination
process, we can improve the background detection performance even
further. Experimental results on real data sets demonstrate the effec-
tiveness of our proposed method.

Index Terms— Environmental sounds, unstructured audio clas-
sification, background modeling, semi-supervised learning.

1. INTRODUCTION

The ability to automatically characterize general audio environment
types is an important step toward developing the understanding of a
scene (or context) surrounding an audio sensor [1–4]. To arrive at a
better understanding of the audio context or scene, we investigate the
modeling of background audio of complex environments. Unstruc-
tured acoustic context refers to a location or setting with a variety
of different acoustic characteristics such as a coffee shop, park or
street. Unlike speech and music, which have formantic structures
and harmonic structures, respectively, unstructured audio is variably
composed from different heterogeneous sound sources, and hence
can have diverse signal characteristics. There are several motivating
applications that can benefit from context awareness. Examples in-
clude mobile device-based services and wearable interfaces, as well
as providing hearing for robots or surveillance systems, which are
currently predominantly vision based. The first step toward this di-
rection is the ability to comprehend the unstructured ambient con-
text. Being able to enhance the system’s context awareness by incor-
porating audio information, along with existing visual knowledge,
would have significant utility.

The background in an ambient auditory scene can be considered
as something recurring, and noise-like, which is made up of various
sound sources, but changing over time, i.e., traffic and passers-by
on a street. In contrast, the foreground can be viewed as some-
thing unanticipated or as a deviation from the background model,
i.e., passing ambulance with siren. The problem arises when iden-
tifying foreground existence in the presence of background noise,

given the background also changes with a varying rate, depending
on different environments. If we create fixed models with too much
prior knowledge, these models could be too specific and might not do
well with new sounds. On the other hand, models that do not con-
sider prior knowledge, such as unsupervised techniques, typically
use simple methods of thresholding [5]. Then, we would be led to
the problem of threshold determination. This would be impractical
in unstructured environments since there are no clear boundaries be-
tween different types of sounds.

Systems employing learning techniques, such as in [6], build
models explicitly for specific audio events, making it inflexible to
new events. The state-of-the-art approaches in background model-
ing [7] do not make any assumptions about the prior knowledge of
the location and operate with ephemeral memory of the data. The
method proposed in [7] models the persistency of features by defin-
ing the background as changing slowly over time and assuming fore-
ground events to be short and terse, e.g., breaking glass. The problem
arises when the foreground is also gradual and longer lasting, e.g.,
plane passing overhead. In this case, it would adapt the foreground
sound as background, since there is no knowledge of the background
or foreground. It would be difficult to verify whether the background
model is indeed correct or models some persistent foreground sound
as well.

In this work, we consider modeling and detecting background
and foreground sounds by incorporating explicit knowledge of data
into the process. We propose to include audio prediction models as
a procedure to learn the background and foreground sounds. Our
framework is comprised of two modules, each addressing a separate
issue. First, we use a semi-supervised method to train classifiers to
learn models for the foreground and background of an environment.
Then, we use the learned models as a way to bootstrap the overall
system. A separate model is constructed to detect the changes in
the background. It is then integrated together with audio prediction
models to decide on the final background/foreground (BG/FG) de-
termination.

The rest of this paper is organized as follows. Sec. 2 examines
the semi-supervised learning approach applied to audio data. Sec.
3 describes a framework for background modeling. Our experimen-
tal data and setup are presented in Sec. 4 and experimental results
and discussion are given in Sec. 5. Finally, concluding remarks are
provided in Sec. 6.

2. SEMI-SUPERVISED LEARNING WITH AUDIO

We begin our study by building prediction models to classify the
enivironment into foreground and background. To obtain classifiers
with high generalization ability, a large amount of training samples
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Table 1. Classification results using self-training. (in %)

Data set EM EM-λ
Coffee room 88.7 92.5

Courtyard 76.1 81.0

Subway platform 73.7 86.5

are typically required. However, labeled samples are fairly expensive
to obtain while unlabeled natural recordings consisting of environ-
mental sounds are easy to come by. Thus, we investigate ways to
automatically label them using self-training [8] to increase the train-
ing example size. In self-training, a classifier for each class is trained
on a labeled data set. Then, it labels these unlabeled examples auto-
matically. The newly labeled data are added to the original labeled
training set, and the classifier is refined with the augmented data set.

After the above steps, we train a multivariate probability den-
sity model to recognize the background and a separate one for the
foreground, where the expectation maximization (EM) approach is
used to estimate the parameters of the model. We use the augmented
EM approach (EM-λ) in [8], where parameters are estimated using
both labeled and unlabeled samples. The contribution of unlabeled
samples are weighted by a factor 0 ≤ λ ≤ 1, which provides a way
to reduce the influence of the use of a large amount of unlabeled
data (as compared to the labeled data). It also makes the algorithm
less sensitive to the newly labeled data. With the standard EM, we
maximize the M-step using:

lc(θ|X) = log(P (θ)) +
X
xiεX

log
KX

i=1

αjP (Xi|θj), (1)

where there are N training data, X , with class labels yiεK.

When unlabeled data xiεX
u are incorporated into the labeled

data xiεX
l, the new training set becomes X = Xl ∪ Xu. Then, to

maximize the M-step in EM-λ, we have

lc(θ|X) = log(P (θ)) +
X

xiεXl

log
KX

i=1

αjP (Xi|θj)

+λ

0
@ X

xiεXu

log
KX

i=1

αjP (Xi|θj)

1
A ,

(2)

which results in the following parameter estimation:

P (X|kj ; θ) =
1 +

P|X|
i=1 P (yi = kj |xi)P|X|

i=1 Λ(i)P (yi = kj |di)
(3)

with the prior as

P (kj |θ) =
1 +

P|X|
i=1 Λ(i)P (yi = kj |xi)

|K| + |Xu| + λ|Xu| , (4)

and a weighting factor Λ(i), defined as

Λ(i) =

(
λ, if xiεD

u,

1, if xiεD
l.

(5)

If none of the classifiers found the unlabeled sample to be probable
(e.g., probabilities are low, say, less than 15%), we assign the unla-
beled data to the foreground classifier since it is more likely that the
unseen data sample is part of the foreground model.

To demonstrate the effectiveness of this semi-supervised train-
ing approach for our dataset, we compare results between the usual
EM approach and the EM-λ approach. The experimental setup is
described in Sec. 4. After using the self-training method to label a
large amount of unlabeled audio data, we re-train models Pfg and
Pbg for the background determination process. Experimental results
are summarized in Table 1.

3. ONLINE ADAPTIVE BACKGROUND DETECTION

Once prediction models, Pfg and Pbg , are learned for foreground
(FG) and background (BG) classification, we utilize these models in
the online adaptive background detection process. The initial back-
ground modeling work was done for video [9], which uses the mix-
ture of Gaussians for each pixel. Instead of modeling the pixel pro-
cess, Moncrieff et al. [7] propose to model the audio feature vector
as Gaussians mixture densities. Our adaptation is based on the latter.
The resultant algorithm is summarized below.

The history of feature vector xt can be viewed as {x1, x2, . . . , xt},
each xt is modeled by a mixture of K Gaussian distributions. The
probability of observing current xt is given by

Ponline(xt) =
KX

i=1

αi,tP (xt|θi,t).

That is, xt is represented by the components of the mixture model.
Since xt varies over time, the mixture models have to be re-trained
at every time t to maximize the likelihood of X . Instead, we use
an online K-means approximation algorithm. Every xt is checked
against the existing K Gaussian distributions to determine if a match
is found. The Kth component is viewed as a match if xt is within 2.5
standard deviations from the mean of a distribution, as done in [7,9].
If none of the distributions qualify, the least probable distribution is
replaced by the current observation xt as the mean value with an
initial high variance and a low prior. The parameters are adjusted
with the prior weights of each component as

αk,t = (1 − βω ∗ Mk,t)ωk,t−1 + βω(Mk,t), (6)

where Mk,t is 1 for matched models and 0 for mismatched ones
and βω is the learning rate, which determines the rate of adaptation
of the background model. After the approximation, priors are re-
normalized (summing to 1) and used to decrease the weight of the
models that are not matched. The parameters for unmatched mod-
els remain the same, while matched models update their parameters
with new observation xt as

μk,t = (1 − ρ)μt−1 + ρXt

Σi,j
t = (1 − ρ)Σi,j

t−1 + ρ(Xi
tX

j
t ),

where
ρ = βge−

1
2d

(Xt−μt−1)T P−1
t−1(Xt−μt−1)

is the second learning rate that is dependent on the data and βg de-
termines the update rate of model parameters. Using this method to
update does not destroy the existing models with new incoming data,
but remains in the overall system (while having their prior weights α
decrease). The model with the lowest α becomes the the least prob-
able model, which will then be replaced by the new observation.

From here on, we deviate from that of [7] by including both Pfg

and Pbg into the system. For updating Pfg and Pbg , we continue to
use Eqs. (2)-(4), but in a sliding windows approach. As the system
runs online, if we permit an increasing amount of unlabeled data
to be included in the model, it would allow errors from the self-
training process to propagate. To regulate possible concept drifts (as
trends and patterns tend to change over time), we use a simple sliding
window method, where only unlabeled data within the window of
size m is utilized in the self-training process. Any unlabeled data
outside the window is not used. Furthermore, to avoid re-training
models at every second, we perform the self-training process at every
m
4

interval. This means that we remove the oldest m
4

of the data from
the window to include newly arrived unlabeled data. For example if
m = 120 samples, then we perform self-training at every 30 samples
interval.
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In addition, we attempt to maintain Pfg to reflect the current
concept by placing more emphasis on the current data sample and
using a new Λfg for Pfg defined as

Λfg(i) =

(
m−zm

m
, if xiεD

u,

λ, if xiεD
l,

(7)

where zi = {z1, z2, . . . , zm}, and where z1 and zm are the begin-
ning and the end of window m, respectively.

For BG/FG classification, we rank their distributions by prior
weights ᾱonline and αbg , αfg (from Pbg , Pfg , respectively, depend-
ing on P (k|xt; θ)). Since we use separate models for the foreground
and background, we normalize their priors to 1. For classification,
we ordered the Gaussians by their values of αonline + αs, where
αs = αbg if Pbg(μt) ≥ Pfg(μt) and 0 otherwise. The distributions
chosen as the foreground model are obtained via

FG =

2
4khighestX

k=1

αonlinek + αsk

3
5 ≤ T,

where khighest is the highest rank model and k = 1 the lowest
ranked. T is the tolerance threshold for background classification.
A lower T will result in more distributions being classified as back-
ground. Models not chosen as foreground are consider background
models.

We use a heuristic to perform the final classification. We utilize
a queue to keep track of results at each time t from either a back-
ground or foreground classification of Pbg|fg(xt, xt−1, . . .). If there

is no change between classifications of previous distribution P t−1
online

and the current one, P t
online, we append the result Pbg|fg(xt) into

the queue and make the classification at t by taking a majority vote
of the result queue at t, t − 1, . . . , t − q, where q is the queue size.
Using a queue to remember the results allows for some misclas-
sification in the prediction process. When there is change between
P t−1

online and P t
online, we examine Pbg|fg(xt) and Pbg|fg(xt−1). If

they are consistent, we also take a majority vote. Otherwise, we take
on the classification Pbg|fg(xt) at t. Whenever there is a change in
classification, we clear the queue of results from t − 1, . . . , t − q.

4. DATA AND EXPERIMENTS

To demonstrate the effectiveness of the proposed online background
modeling algorithm, the following three environment sounds are
used in the test:

1. Coffee room: Background includes footsteps, shuffling of
things, people coming in and out. Foreground includes cof-
fee grinding and brewing, printing sound (since a printer is
located in the coffee room), etc.;

2. Courtyard: Background includes water fountain, distant talk-
ing from passers-by and traffic from nearby streets. Fore-
ground includes plane passing overhead, cellphone ringing,
loud talking, footsteps, etc.;

3. Subway station platform: Background includes passers-by
noise and talking, trains in the distant. Foreground includes
train arrival/departure, trains breaking, announcements, etc.

They are made up of ambient noise of a particular environment, com-
posed of many sound events. We do not consider each constituent
sound event individually, but as many properties of each environ-
ment. We use continuous, unedited audio streams as the training
and testing data. The first two data sets were collected and recorded
in mono-channel, 16 bits per sample with a sampling rate of 44.1

Fig. 1. Decomposition of signals from 6 environments, where the
top-most signal is the original, followed by the first five basis vec-
tors, demonstrating different underlying structures for various envi-
ronments, where an MP-based algorithm picks up these top basis
vectors and represents them uniquely.

KHz and of varying lengths in the Electrical Engineering building
of the University of Southern California. They were taken at various
times over a period of two weeks, with a duration averaging around
15 minutes each. The subway station set is also recordings of natu-
ral (unsynthesized) sound clips, which were obtained from [10] and
down-sampled to a 22.050 KHz sampling rate.

The incoming audio signal was segmented into fixed duration
1-second clips. Every second of the data sets was manually la-
beled. Features were computed for every 1-second window by av-
eraging those from a 30-msec rectangular sampling window with
5 msec overlap. They were calculated for each clip and combined
to form those of current clip xt. We use two types of features: 1)
Mel-frequency cepstrum coefficient analysis (MFCC), widely pop-
ular in speech and audio processing, and 2) MP-features [4]. MP-
features utilize the matching pursuit (MP) algorithm and a dictio-
nary of Gabor atoms to learn the inherent structure of each type of
sounds and select a small set of joint time frequency features. This
method has shown to be robust for classifying sounds where the pure
frequency-domain features fail and can be advantageous in combin-
ing with MFCC to improve the overall performance. Examples of
MP-features are given in Fig. 1. The feature vector used in this work
contains a combination of MFCC and MP-features. For details of
feature extraction and extensive experiments, we refer to [11].

For evaluation, the BG/FG classification was compared with la-
beled testing sets. We had 40 minutes of data for Coffee room and
Courtyard. We were only able to obtain 15 minutes for the Subway
station. The data were divided into 4 sets for each class. We used 2
sets as unlabeled data and 1 set as labeled in the self-training process.
The last subset was used for testing in the final online BG/FG deter-
mination. Results were taken from the average of six trials (from
different permutations of the 4 sets). The data were segmented into
1-second segments, but analyzed in sequence, where each segment
was considered a sample. The accuracy of the detection is calculated
by

BG accuracy =
Ny=bg

Ntotal − Nfg
,

where Ny=bg is the number of samples classified as BG, Nfg is the
number of FG samples that are correctly classified, and N is the total
number of samples.

We calibrated the parameter values for each dataset to produce
better overall results. The weighting factor, λ = 0.5, was set to
reduce the sensitivity to unlabeled data. The threshold, T = 0.5,
was the tolerance for determining distributions that were considered
as BG. αg and αω were set to 0.01 in the experiments. The sliding
window size m was set to 120 samples. Based on the observation
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from [4], the setting for the MP-features was chosen for the Gabor
function with the following parameters in this work: s = 2p (1 ≤
p ≤ 8), u = {0, 64, 128, 192}, ω = Ki2.6 (with 1 ≤ i ≤ 35,
K = 0.5 × 35−2.6 so that the range of ω is normalized between
0 and 0.5), θ = 0 and the atom length is truncated to N = 256.
Thus, the dictionary consists of 1120 = 8 × 35 × 4 Gabor atoms
that were generated using scales of 2p and translated by quarters of
atom length N .

5. RESULTS AND DISCUSSION

We compared the performance accuracy between the proposed
method and the one from [7] as a baseline. We refer to our ap-
proach as combination models (CM) and [7] as persistency only
models (PSM). The experimental results are summarized in Ta-
ble 2. We see that both methods produce better accuracy for the
background than foreground since the background is more constant
than the foreground, and therefore is easier to learn. The PSM
method performs poorly on Coffee room data since it cannot classify
the long-persistent sound of a printer as the foreground. At one
time, the printing sound continuously ran for 49 seconds and these
segments were misclassified as background.

Table 2. Background detection accuracy (in %)

CM PSM
Data FG BG FG BG

Coffee room 75.9 82.5 27.4 56.8

Courtyard 63.5 92.1 36.7 89.9

Subway platform 74.8 79.2 46.5 58.9

We examine a small segment of data (as shown in Fig. 2) in
more detail. In this example, the delay from PSM was about 7 sec-
onds, while CM results in a 2-3 second delay. We also note that,
after about 10 seconds of considering the current sound clip as fore-
ground, the foreground distributions were soon considered to part of
the background process. With a quick change in the BG/FG events,
PSM takes about 10-15 seconds to stabilize depending on the update
rates.

Fig. 2. Comparison of classification results obtained by online back-
ground modeling with combination models (CM) and persistency
only models (PSM).

We observe that it is more difficult to detect the foreground seg-
ments in the Courtyard class. When a plane passed over for 16 sec-
onds, PSM only detected 4 seconds of it while CM detected about 10
seconds. The Subway set provides an example comprised of many
short events. There were very few moments when there is a con-
stant background. In this case, we observe that it was difficult for
both systems to achieve high performances. However, CM still out-
performs PSM. For the CM method, class determination is based on

the combined effort of both online models and prediction models,
making it less sensitive to changes in parameters. The PSM method
is more sensitive to parameter changes since its classification only
depends on one model.

6. CONCLUSION AND FUTURE WORK

In this work, we proposed a framework for audio background model-
ing, which includes prediction, data knowledge and persistent char-
acteristics of the environment, leading to a more robust audio back-
ground detection algorithm. This framework has the ability to model
the background and detect foreground events as well as the ability to
verify whether the predicted background is indeed the background or
a foreground event that protracts for a longer period of time. Exper-
imental results demonstrated promising performance in improving
the state-of-the-art in background modeling of audio environments.
We also investigated the use of a semi-supervised learning technique
to exploit unlabeled audio data. It is encouraging that we could uti-
lize more unlabeled data to improve generalization as they are usu-
ally cheap to acquire but expensive to label. And more than often,
we are forced to work with relatively small amount of labeled data
due to this limitation. Future work will include using an ensemble of
classifiers to tackle the problem of concept drifts, e.g., having a dif-
ferent classifier for each recent time period and adaptively learning
the window size to the current extent of the concept drift.
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