
SPARSE BOOSTING

Zhen James Xiang and Peter J. Ramadge

Dept. of Electrical Engineering, Princeton University, Princeton NJ

ABSTRACT

We propose a boosting algorithm that seeks to minimize the

AdaBoost exponential loss of a composite classifier using

only a sparse set of base classifiers. The proposed algorithm

is computationally efficient and in test examples produces

composite classifiers that are sparser and generalize as well

those produced by Adaboost. The algorithm can be viewed as

a coordinate descent method for the l1-regularized Adaboost

exponential loss function.

Index Terms— Pattern classification, Algorithms, Signal

representations, Optimization methods.

1. INTRODUCTION AND OUTLINE

AdaBoost [1] is used as a pattern classification algorithm in a

wide variety of signal processing applications [2]. AdaBoost

constructs a powerful composite classifier as a weighted lin-

ear combination of a large set of base classifiers. Although

the discriminant power of a single base classifier is usually

weak, the composite classifier can achieve an acceptable clas-

sification accuracy.

In addition to classification accuracy, sparsity of the com-

posite classifier is a desirable attribute. By this we mean that

relatively few base classifiers are assigned a nonzero weight

in the linear combination. A sparse classifier is easier to store,

process, and interpret and, most importantly, is less prone to

over fitting. Through empirical studies, AdaBoost is known

to be generally resistant to over fitting, even for a large num-

ber of iterations [3, 4]. However, we will show that there are

additional gains to be made by adding a sparsity mechanism

directly into the boosting algorithm.

Boosting algorithms can be interpreted as iterative gradi-

ent descent procedures that minimize a loss function on the

training data [5, 6, 7]. In many cases, these schemes add at

most one new weight per iteration. Hence early stopping of

the boosting process is a simple method to ensure sparsity

[8]. It has been shown that early stopping of AdaBoost ap-

proximately minimizes an exponential loss function subject

to an l1 constraint on the coefficient vector [9]. This suggests

that sparsity can be ensured by imposing l1-regularization

on the optimization of the loss function. This is in accord

with results in compressed sensing, where l1-regularization

has proved an effective approximation to an l0 sparsity con-

straint [10]. The idea of l1-regularized loss minimization has

been explored in [9]. However, direct solution of the con-

vex l1-regularized loss problem is computationally too ex-

pensive in many real applications. This has lead to propos-

als for indirect methods of solution. To this end, ε-boosting

seeks to solve the regularized problem iteratively adding a

small weight ε to one base classifier each iteration [5]. How-

ever, ε-boosting is too inefficient for practical application.

Other work has examined combining Adaboost with smaller

l1-regularized loss optimization problems from the perspec-

tive of maximizing the margin on the training examples [11].

Despite this work, there remains a need for an efficient boost-

ing algorithm that directly incorporates a sparsity mechanism.

This paper explores the idea of changing two coordinates

in reverse directions to incorporate sparsity into coordinate

descent boosting procedures. We demonstrate this idea by

a new algorithm called RegBoost (short for Regularized
Boost), which works in a similar fashion to AdaBoost except

that it incorporates this simple, intuitive mechanism which

is amenable to l1-regularization. Moreover, with one simple

change, RegBoost reverts to Adaboost. Our empirical stud-

ies show that RegBoost achieves similar generalization to

AdaBoost but with sparser composite classifiers.

In Section 2, we introduce some basic notations and re-

view the AdaBoost algorithm. We then present the RegBoost

algorithm in Section 3 and examine its performance in Sec-

tion 4, followed by conclusions in Section 5.

2. PRELIMINARIES

In a typical binary classification problem, one is given train-

ing data S = {(xi, yi)}m
i=1 (where xi ∈ R

p are instances

and yi ∈ {−1, +1} are corresponding labels) and a set of

base classifiers H = {hj}|H|
j=1. A base classifier hj ∈ H

is a mapping from instances to possible labels, hj : R
p �→

{−1, +1}. The performance of any classifier h under prob-

ability distribution w = {wi}m
i=1 is measured by its edge:

edge(h,w) =
∑m

i=1 wiyih(xi), which is related to the error

probability Perr(h) with respect to w on the training set by

edge(h,w) = 1− 2Perr(h)
Let hc(x) = sign(

∑|H|
j=1 αjhj(x)) denote the composite

classifier. We assume that h ∈ H ⇒ −h ∈ H and require

αj ≥ 0, j = 1, . . . , |H|. Using this notation, AdaBoost can

be specified as follows:

1625978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Algorithm 1 AdaBoost

1: �α ← 0
2: wi ← 1

m , i = 1, 2, . . . , m
3: for t = 1 to T do
4: k ← arg maxj edge(hj ,w)
5: ε = 1

2 ln 1+edge(hk,w)
1−edge(hk,w) = 1

2 ln 1−Perr(hk)
Perr(hk)

6: αk ← αk + ε

7: wi ←
{

wie
ε if yihk(xi) = −1

wie
−ε if yihk(xi) = 1

8: w ← w
||w||1

9: end for
10: Result: hc(x) = sign(

∑|H|
j=1 αjhj(x))

The margin of the classifier on example i is μi =∑|H|
j=1 yiαjhj(xi)/‖�α‖1. There is empirical and theoreti-

cal evidence that AdaBoost achieves good generalization by

enlarging the margins on the training examples [12]. Max-

imizing the margins is closely related to minimizing the

following exponential loss function:

L(�α) =
m∑

i=1

exp(−yi

|H|∑
j=1

αjhj(xi)) (1)

In [6] and [7] it is shown that AdaBoost is equivalent to a

coordinate descent procedure for minimizing (1). Moreover,

in [9] it is shown that early stopping of AdaBoost approxi-

mately minimizes (1) subject to an l1 constraint on the coeffi-

cient vector �α.

In summary, the basic mechanism of AdaBoost is cur-

rently understood in terms of minimizing the exponential loss

(1) using coordinate descent and this in turn is closely related

to enlarging the margins. Minimization of the loss function

subject to l1-regularization has also been considered [5, 11].

However, obtaining an efficient algorithm to solve the regu-

larized problem remains a problem under study.

3. THE REGBOOST ALGORITHM

With the motivation provided above, we aim to efficiently

solve the regularized loss minimization problem:

min : L(�α) =
m∑

i=1

exp(−yi

|H|∑
j=1

αjhj(xi)) (2)

s.t. :

|H|∑
j=1

|αj | ≤ R (3)

Our proposed algorithm, RegBoost , for obtaining a solution

is defined as follows:

Algorithm 2 RegBoost

1: �α ← �α0

2: wi = exp(−yi

∑|H|
j=1 αjhj(xi))

3: w ← w
||w||1

4: for t = 1 to T do
5: hk = arg maxj edge(hj ,w)
6: hl = arg minj:αj>0 edge(hj ,w)

7: ε = min(2αl,
1
2 ln P (yhk(x)>yhl(x))

P (yhk(x)<yhl(x)))
8: αk ← αk + ε

2
αl ← αl − ε

2

9: wi ←
⎧⎨
⎩

wie
ε if yihk(xi) < yihl(xi)

wie
−ε if yihk(xi) > yihl(xi)
wi if yihk(xi) = yihl(xi)

10: w ← w
||w||1

11: end for
12: Result: hc(x) = sign(

∑|H|
j=1 αjhj(x))

Because the loss function (1) decreases when we scale up

�α, (3) must be an equality at an optimum solution. Therefore

we start with an initial point �α0 on the boundary of the feasi-

ble set (‖�α0‖1 = R). Such initialization can be obtained by

using AdaBoost until ‖�α‖1 reaches R or (more naively) by

assigning the regularization budget R to a single classifier.

Unlike AdaBoost, which only “adds” base classifiers it-

eratively, a key component of RegBoost is that it can also

“remove” classifiers at the same time. In each iteration,

RegBoost not only chooses a best base classifier hk (step 5),

but also chooses a worst active (meaning with nonzero coeffi-

cient) classifier hl (step 6). The l1 budget on the coefficients

is then transferred from the worst classifier hl to the best

classifier hk (step 8), while keeping
∑|H|

j=1 |αj | = R.

This major difference ensures that RegBoost will produce

a sparser composite classifier than AdaBoost. The reason for

this is twofold: First, the new algorithm promptly removes

poor classifiers and relocates resources to better classifiers.

This results in fewer active classifiers, with each single clas-

sifier being more effective. Second, the algorithm seeks a

solution of the l1-regularized loss minimization problem (1)

(We will prove this below.). The l1-regularization will impose

sparsity on the solution and minimizing the loss will ensure

good generalization error [9, 12].

Other than this key difference, and the changes it ne-

cessitates, RegBoost is highly analogous to AdaBoost. This

minimal change ensures that RegBoost inherits the simplicity

and efficiency of AdaBoost while directly incorporating a

sparsity mechanism. In this sense it is a natural extension of

Adaboost. Indeed, each iteration step of AdaBoost can be

viewed as a degenerate case of an iteration step of RegBoost

. To see this, first note that the AdaBoost step length is

ε = 1
2 ln 1−Perr(hk)

Perr(hk) . This reflects the value of the newly

chosen classifier. Similarly, in RegBoost , the step length
1
2 ln P (yhk(x)>yhl(x))

P (yhk(x)<yhl(x)) can be viewed as a measure of how

1626

better hk is compared to hl. The important point is that these

two step sizes agree when hl = −hk, in which case we have:

1
2

ln
P (yhk(x) > yhl(x))
P (yhk(x) < yhl(x))

=
1
2

ln
P (yhk(x) = 1)

P (yhk(x) = −1)
=

1
2

ln
1− Perr(hk)

Perr(hk)
(4)

Now, if we remove the requirement αj > 0 (meaning hj does

not have to be an active classifier) in step 6 of RegBoost , then

the worst classifier is just the negation of the best classifier:

hl = −hk. In this case, ε is the same as that of AdaBoost

and all the adjustments in steps 8 and 9 reduce to a normal

AdaBoost iteration.

It should also be noted that RegBoost has the same the-

oretical foundation as AdaBoost: it is a “coordinate descent”

procedure for solving (2,3). To illustrate this, consider all pos-

sible adjustments along the coordinate directions from point

�α. For any two indices j1, j2, We can subtract a/2 from coef-

ficient αj1 and add it to αj2 to keep
∑|H|

j=1 |αj | = R. Denote

the value of the loss function after such adjustment as:

Lj1→j2(�α, a) = L(α1, . . . , αj1 −
a

2
, . . . , αj2 +

a

2
, . . . , α|H|)

Notice that Lj1→j2(�α, 0) = L(�α).
The following theorem shows that RegBoost operates on

a diagonal of the two-coordinate plane yielding the largest

gradient descent. Moreover, the step size is chosen to achieve

the minimum along that direction.

Theorem 1. In each iteration of Algorithm 2, the choice of
k, l and ε satisfy the following properties:

(l, k) = arg max
(j1,j2):αj1>0

(
−∂Lj1→j2(�α, a)

∂a

∣∣∣
a=0

)
(5)

ε = arg min
a:a/2≤αl

Ll→k(�α, a) (6)

Proof. First, the weight distribution on each example is al-

ways proportional to the exponential loss of the example:

wi =
1
Z

exp(−yi

|H|∑
j=1

αjhj(xi)) (7)

where Z is a normalization factor. Equation (7) is clearly true

for the initialization step (step 2). Every time we remove ε
2

from αl to αk, the weight adjustments in step 9 guarantee that

equation (7) continues to hold.

The loss function can now be written as: L(�α) =∑m
i=1 Zwi. We then divide the sum

∑m
i=1 into four groups,

according to whether (yihj1(xi), yihj2(xi)) = (1, 1), (−1, 1),
(1,−1) or (−1,−1). These cases correspond to whether hj1

and hj2 are right or wrong on an example. After substituting

αj1 with αj1 − a/2, and αj2 with αj2 + a/2, we obtain

Lj1→j2(�α, a) =
∑

i:
yihj1 (xi)=yihj2 (xi)

Zwi+

∑
i:yihj1 (xi)=1

yihj2 (xi)=−1

Zeawi +
∑

i:yihj1 (xi)=−1

yihj2 (xi)=1

Ze−awi

(8)

So

−∂Lj1→j2(�α, a)
∂a

= Ze−aP (yhj1 = −1, yhj2 = 1)

−ZeaP (yhj1 = 1, yhj2 = −1)
(9)

Letting a = 0 yields:

− ∂Lj1→j2(�α, a)
∂a

∣∣∣
a=0

=ZP (yhj1 = −1, yhj2 = 1)− ZP (yhj1 = 1, yhj2 = −1)
=ZP (yhj1 = −1)− ZP (yhj2 = −1)

=
Z

2
edge(hj2 ,w)− Z

2
edge(hj1 ,w)

To maximize this quantity under the constraint of αj1 >
0, we must choose j2 = arg maxj edge(hj ,w), j1 =
arg minj:αj>0 edge(hj ,w). This is exactly the way we

choose l and k in the algorithm. So equation (5) is proved.

From equation (9), with j1 = l, j2 = k, Lj1→j2(�α, a)
achieves minimum when Ze−aP (yhj1 = −1, yhj2 = 1) −
ZeaP (yhj1 = 1, yhj2 = −1) = 0. Therefore

a =
1
2

ln
ZP (yhl(x) = −1, yhk(x) = 1)
ZP (yhl(x) = 1, yhk(x) = −1)

=
1
2

ln
P (yhk(x) > yhl(x))
P (yhk(x) < yhl(x))

(10)

That is how ε is selected in the algorithm, with the additional

constraint ε/2 ≤ αl to ensure all coefficients remain positive.

This proves (6).

4. EXPERIMENTS

In all experiments, we used 100 training examples and 500

testing examples. We used single stumps as base classifiers.

We first compare RegBoost with AdaBoost using a bench-

mark data set ringnorm. The ringnorm examples are gen-

erated from two 20-dimensional Gaussian distributions, one

N(0, 4I), the other N(μ, I) with μ = (a, a, . . . , a) and a =
1/
√

20. We performed two experiments; each with 20 trials.

In experiment 1, we used AdaBoost to initialize RegBoost

by first running AdaBoost until
∑

k αk = R, then running

RegBoost from that initial condition. The results, Fig1(a) and

1(c), show that RegBoost sparsifies the result of AdaBoost

while continuing to lower the test error. For fair compari-

son, we also included the generalization results for clipped

1627

0 500 1000 1500 2000
0.24

0.25

0.26

0.27

0.28

0.29

0.3

iterations

ge
ne

ra
liz

at
io

n
er

ro
r

RegBoost
AdaBoost
Clipped AdaBoost

(a) experiment 1: test error

0 500 1000 1500 2000
0.24

0.25

0.26

0.27

0.28

0.29

0.3

iterations

ge
ne

ra
liz

at
io

n
er

ro
r

RegBoost
AdaBoost
Clipped AdaBoost

(b) experiment 2: test error

0 500 1000 1500 2000
0

50

100

150

iterations

nu
m

be
r

of
 c

la
ss

ifi
er

s

RegBoost/Clipped AdaBoost
AdaBoost

(c) experiment 1: sparsity

0 500 1000 1500 2000
0

50

100

150

iterations

nu
m

be
r

of
 c

la
ss

ifi
er

s

RegBoost/Clipped AdaBoost
AdaBoost

(d) experiment 2: sparsity

Fig. 1. Comparison of RegBoost and AdaBoost on ringnorm

AdaBoost, which simply drops the base classifiers with the

smallest coefficients in the AdaBoost ensemble in order to

match the number of active classifiers in RegBoost . Fig1(a)

shows that this naive method of obtaining sparsity sacrifices

classification accuracy. In experiment 2, we used an even sim-

pler initialization of RegBoost (assign all weight R to a sin-

gle classifier) and set R = 100. The results, Fig1(b) and 1(d),

show that RegBoost recovers from this naive initialization and

eventually surpasses AdaBoost in both sparsity and accuracy.

We then tested RegBoost on four data sets from the UCI

repository: German, Heart, Sonar and Spam. For each data

set we are interested in the best error rate achieved before over

fitting occurs. In each experiment, we averaged the results

of 10 trials. We ran 500 iterations for each trial. We used

the naive initialization strategy for RegBoost with R = 40
(larger R yield the same result). The results are shown in

Table 1. In all data sets, RegBoost learns a sparser classifier

with comparable generalization performance.

As expected, we found little difference in running times

between two algorithms. The only additional computation in

a RegBoost iteration is searching for a worst active classifier

among 100 or so classifiers (Table 1). Since both algorithms

have to search over 10000 or so weak classifiers in the first

place, this increment is negligible.

Table 1. Comparison of RegBoost and AdaBoost on real data

RegBoost AdaBoost

error rate number error rate number

German 24.9% 47 25.3% 60

Heart 18.1% 11 19.2% 16

Sonar 12.1% 52 13.8% 157

Spam 10.7% 26 10.7% 59

5. CONCLUSION

The RegBoost boosting algorithm has been introduced to

address the need for an efficient solution method for the l1-

regularized loss minimization problem. We provided both

theoretical and experimental evidence that RegBoost pro-

duces sparse classifiers without compromising classification

accuracy or computational efficiency. The algorithm is ro-

bust to the selection of the regularization parameter R and

outperforms AdaBoost even when started with very naive ini-

tializations. When started from an initial condition produced

by Adaboost, it actually sparsifies the Adaboost solution

and improves generalization. The sparsity mechanism be-

hind RegBoost can potentially be applied to other coordinate

descent algorithms.

6. REFERENCES

[1] Y. Freund and R. E. Schapire, “A decision-theoretic

generalization of on-line learning and an application to

boosting,” in European Conference on Computational
Learning Theory, 1995, pp. 23–37.

[2] Y. Freund and R. E. Schapire, “Experiments with a

new boosting algorithm,” in International Conference
on Machine Learning, 1996, pp. 148–156.

[3] H. Drucker and C. Cortes, “Boosting decision trees,” in

Advances in Neural Information Processing Systems 8:
Proceedings of the 1995 Conference. MIT Press, 1996.

[4] L. Breiman, “Arcing classifiers,” Annals of Statistics,

vol. 26, pp. 801–823, 1998.

[5] J.H. Friedman, “Greedy function approximation: A gra-

dient boosting machine,” Annals of Statistics, vol. 29,

no. 5, pp. 1189–1232, 2001.

[6] G. Rätsch, T. Onoda, and K.R. Müller, “Soft margins

for adaboost,” Machine Learning, vol. 42, no. 3, pp.

287–320, 2001.

[7] L. Breiman, “Prediction games and arcing algorithms,”

Neural Comp., vol. 11, no. 7, pp. 1493–1517, 1999.

[8] W. Jiang, “Process consistency for adaboost,” Annals of
Statistics, vol. 32, no. 1, pp. 13–29, 2004.

[9] S. Rosset, J. Zhu, and T. Hastie, “Boosting as a regular-

ized path to a maximum margin classifier,” Journal of
Machine Learning Research, vol. 5, pp. 941–973, 2004.

[10] E.J. Candes and T. Tao, “Decoding by linear program-

ming,” IEEE Transactions on Information Theory, vol.

51, no. 12, pp. 4203–4215, 2005.

[11] Y. T. Xi, Z. J. Xiang, P. J. Ramadge, and R. E. Schapire,

“Speed and sparsity of regularized boosting,” in 12th
International Conference on Artificial Intelligence and
Statistics, April 2009.

[12] R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee,

“Boosting the margin: A new explanation for the effec-

tiveness of voting methods,” Annals of Statistics, vol.

26, pp. 1651–1686, 1998.

1628

