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ABSTRACT

The sequential data flux in many time-series applications require that
only a small fraction of the data are stored for future processing. Fur-
thermore, labels for these data are possibly sparse and they might
show some biases. To support learning under such restrictive con-
straints, we combine manifold regularization with sequential learn-
ing under a semi-supervised learning scenario. The online learning
mechanism integrates a regularization based on the data smoothness
assumptions. We present a proof-of-concept for illustrative toy prob-
lems, and we apply the algorithm to a real-world sparse online clas-
sification task for music categories.

Index Terms— Online Learning, Semi-Supervised Learning,
Classifier Adaptation

1. INTRODUCTION

We address the problem of semi-supervised sequential learning,
which is frequently encountered in real world scenarios. Streams
of sequential time data are readily accessible. However, procuring
labels for these streams of data is often expensive and, in many ap-
plications, labels are obtained for only a subset of data. We consider
the scenario where the learning algorithm cannot actively seek the
class information as in active learning algorithms [1].

Labels are for instance dependent on user behavior, and, hence,
are not necessarily i.i.d. drawn. As such, these sparse labels may
contain biases, e.g., an experimental selection bias filters out labeled
data that only occupy sub regions of the feature space and, therefore,
they are not equally distributed over the entire space.

We briefly outline the general learning setup: Data points are
available one at a time, with each observation serving first as a test
point, and then as a training point. For an incoming data point, a
prediction is made. After prediction, the true label may or may not
be obtained, and the observation is used to update the model in the
next step.

In a specific potential application, we envision the online-
adaptation of models in personalized hearing aids. Modern hearing
aids have an associated classifier that enables the hearing aid to
adjust to the acoustic environment, thereby, providing better hearing
comfort and clarity [2]. For instance, the user might appreciate piano
music, yet he may dislike string instruments. For such a user, the
hearing aid should amplify piano music while suppressing violins
and string instruments. The scenario of biased labels (occupying
specific subspaces) readily arises when the feedback coincide with
segments where the user has the opportunity to manually provide
labels. For instance, it is unlikely for a user to provide feedback
whilst driving a car.

2. BACKGROUND

We consider two machine learning components: sequential online
learning [3], and semi-supervised learning [4, 5]. We highlight rele-
vant algorithms and provide some basic details.

Traditional sequential online-learning algorithm follow the cy-
cle of prediction, reward/loss, and learning. At time step t, the al-
gorithm obtains a data point xt, for which it is required to make a
prediction ft(xt) using its current model or prediction function ft.
Upon completion, the true label yt ∈ {−1, +1} is provided, which
is used to evaluate the system. The algorithm then exploits the avail-
ability of this label to update the model before classifying the next
point xt+1 using the new prediction function ft+1. In this work,
we consider functions chosen from the Reproducing Kernel Hilbert
Space (RKHS).HK is the associated RKHS of functions for a Mer-
cer kernel K : X ×X → R, with the corresponding norm || ||K .

We modify this setting by providing labels for a limited sub-
set of data points during the learning phase. The label set yt ∈
{−1, 0, +1} is extended such that unlabeled data are denoted by
yt = 0. A conservative policy for parameter estimation based on
such a data stream is to filter out and exclusively evaluate the labeled
data. The unlabeled data (yt = 0) is completely ignored.

However, unlabeled data may provide additional information on
the data manifold that is not available in the set of labeled data. The
structure of the manifold often contains information which is rele-
vant for the labels, e.g., densely populated and connected data spaces
often belong to the same class. The prior assumption of smooth data
manifolds also suggests that “nearby” datapoints are more likely to
share the same labels, while datapoints that are “far” apart are less
likely to own the same label. In our paper, this criterion is esti-
mated empirically at time t by a sliding window of the τ most recent
data Xτ = {xt−τ+1, ..., xt}. We impose this constraint of limited
memory that only the τ most recent data points can be stored. This
constraint holds for practical systems with limited memory.

2.1. Passive-Aggressive Online algorithms

For online learning, we employ the Passive Aggressive Online Algo-
rithms (PA) [6]. PA has been defined for fully supervised scenarios.
It solves the constrained optimization problem:

ft+1 = arg min
f∈HK

‖f − ft‖2K (1)

under the constraints that hinge loss vanishes. The hinge loss is given
by:

l(f ; (x, y)) =

j
0 yf(x) ≥ 1
1− yf(x) otherwise.

(2)

The solution to the convex optimization problem yields a closed
form solution which can be expressed in the form:

ft+1(x) = ft(x) +
l(ft(xt); (xt, yt))

K(xt, xt)
ytK(xt, x) (3)
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Consider the linear case where the prediction function ft(xt) =
w′txt. Geometrically, the update solution wt+1 is the vector nearest
to wt which attains a hinge loss of zero on the current example xt

(Fig.1, left).

2.2. Manifold smoothness

The goal is to incorporate additional information about the geomet-
ric structure of the data distribution. This information is useful if
there is a connection between the data distribution and the condi-
tional distribution of the labels P (y|x). Specifically, if two points
x1 and x2 are close, then the conditional distributions P (y|x1) and
P (y|x2) are also similar. We can interpret this as a label smoothness
constraint [7].

This constraint can be incorporated into the objective function as
a regularization term. The data takes a graph representation, where
similarities between datapoints are coded via an affinity matrix W ,
i.e., Wij denotes the similarity between two data points xi and xj .
When optimizing the prediction function f , the empirical formula-
tion for the smoothness constraints takes the form

min
f∈HK

X
i,j

(f(xi)− f(xj))
2Wij . (4)

In this form, the quadratic difference between the labels is weighted
by the similarities of the data points. This can be rewritten to a sim-
ilar form

min
f∈HK

f ′Lf (5)

which uses e.g. the normalized graph Laplacian L = D−
1
2 LD−

1
2 .

Here, D is the diagonal matrix with Dii =
P

j Wij .

3. MANIFOLD REGULARIZATION FOR ONLINE
LEARNING WITH SPARSE LABELS

We consider manifold regularization for online learning with sparse
labels by directly incorporating the manifold smoothness constraints
into the objective function. We specifically consider this extension
for the PA-algorithm.

3.1. Manifold regularized PA learning

We extend the PA objective function, by incorporating a regulariza-
tion term that is defined over a window Xτ = {xt−τ+1, ..., xt} of
past data. The concept of using such a window is common in online-
learning systems that handle concept drifts (e.g. [8]).

In the general formulation, we have

ft+1 = arg min
f∈HK

1

2
||f − ft||2K +

γ

2
f ′Lf, (6)

such that 1− ytft(xt) = 0. Here, L is the normalized graph Lapla-
cian computed over Xτ .

We can show that the Representer Theorem is valid here and
write

f∗(x) =
X

xi∈X

α∗i K(x, xi). (7)

Furthermore, by construction, we have ft(x) =
P

xj
ρjK(x, xj)

where xj’s represent previously seen data and ρj represent scalar
weights. The solution can be seen as an update of weights plus the
uptake of newly seen datapoints.

For simplicity, we consider the linear formulation. Eq 8 below
shows Eq. 6 in the linear form, where now the regularization term
Eq. 5 is also reformulated for the linear form:

wt+1 = arg min
w∈Rn

1

2
||w − wt||2 +

γ

2
w′(X ′

τLXτ )w (8)

with a single feasible affine constraint l(w; (xt, yt)) = 0. The regu-
larization term is γ

2
w′(X ′

τLXτ )w, where γ ≥ 0 is a regularization
parameter for the manifold smoothness assumption.

Fig. 1. Illustration of the optimization problem for PA (left). Exten-
sion of the optimization for manifold regularization (right).

In PA, the update step at time t + 1 finds the w nearest to the
current hyperplane wt that induces hinge loss of 0 on the data-
point xt. The manifold regularization takes the form of a ellipsoid
parametrized by γ, and the solution space is now constrained to
lie also within the ellipsoid. Hence, wt+1 is pushed towards the
regularizing ellipsoid, as shown in Fig. 1.

3.2. Convex Optimization

Fortunately, Eq. 8 is convex: The second term depends on the nor-
malized graph Laplacian, which is symmetric positive semi-definite,
and hence convex We have the sum of two convex functions evalu-
ated over the same domain, which is also a convex function. There-
fore, we are optimizing a convex optimization function under a fea-
sible affine constraint. This fulfills the Slater’s conditions, hence op-
timization is equivalent to satisfying the Karush-Khun-Tucker con-
ditions, and we can solve to obtain (for the linear formulation)

wt+1 = A(wt − λytxt), (9)

where λ =
1−ytx′

tAwt

x′
tAxt

and A = (I + γX ′
τLXτ )−1. The solu-

tion is a transformation of the original solution represented by some
small weighted factor of the spectral cluster solution away from the
identity I . For γ = 0, the solution reverts to the original PA.

3.3. Algorithm

The Laplacian Passive Aggressive algorithm (LapPA) is presented
in Algorithm 1. LapPA differs from PA in the updates: In LapPA,
manifold regularization is performed and controlled by the regular-
ization constant γ ≥ 0. The estimation of the Laplacian L necessary
for computing the regularization term is performed on the most re-
cent window of data Xτ = {xt−τ+1, ..., xt} of fixed size τ . The
algorithm is formulated for the linear case. The kernelized version is
obtained by replacing all inner products by a general Mercer kernel.
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Algorithm 1 LapPA
Require: Input: w1, γ ≥ 0, τ

initial classifier w1, regularization constant γ, window size τ
1: for t = 1, 2, ... do
2: Predict: ŷt = sign(w′txt) for current data xt

3: if yt available: then
4: Compute loss lt = max{0, 1− yt(w

′
txt)}

5: if lt > 0 then
6: Update

λt =
1− ytx

′
t(I + γX ′

τLXτ )−1wt

x′t(I + γX ′
τLXτ )−1xt

wt+1 = (I + γX ′
τLXτ )−1(wt + λtytxt)

7: end if
8: end if
9: end for

4. EXPERIMENTAL RESULTS

We demonstrate the behavior of the algorithm LapPA on synthetic
problems, that serve as a proof-of-concept, and on music data. The
linear-separable 2-rods problem examines the algorithm in the linear
case. We present a similar illustration for the kernelized version,
where two non-linearly separable half moons have to be classified as
a test case for semi-supervised learning algorithms. Finally we show
the results on music data.

In our experiments, we compare LapPA (regularization) to the
baseline PA where learning is executed only on the labeled data. For
the data simulation, 8000 datapoints are drawn i.i.d. and presented
in a sequential order. Each experimental setup is based on 100 inde-
pendent simulations. p% of the datapoints that are sampled from the
selected segments (biases) have accompanying label information, are
supplied to the algorithm after the prediction cycle of that datapoint.
All initial classifiers f1 are set at 0.

The graph affinity matrix is calculated over the specified window
of the τ most recently seen data. We use the similarity measure
d(xi, xj) = exp(−||xi − xj ||2), and threshold to keep only the
30% top entries (ε-neighborhood graph [9]), and set the remaining
edges to 0.

We evaluate using the cumulative accuracy. For a data point
xt, the corresponding predicted dichotomy is given by ŷt =
sign(ft(xt)), where ft is the classifier obtained after processing

xt−1. Hence, Acc = 1
T

PT
t=1 δ(ŷt, yt), where δ is the Kronecker

delta.

4.1. Linear classifier

We consider a simple linearly separable problem. The data is con-
structed from two rectangular regions of classes −1 and +1. Each
rectangle is partitioned along the horizontal axis into 5 equal seg-
ments. Sparse labels (p% of data) are provided for only one segment
for each rod.

Figure 2 shows the final separating hyperplane after sequential
learning with labels provided only for a few points sampled from
opposite corners of the rectangular regions. Without regularization,
PA finds a maximum margin solution between the sub-clusters of
labeled points. However it ignores the information of the data dis-
tribution and erroneously intersects with both regions. This is con-
trasted by the behavior of LapPA which forces the hyperplane away
from the solution that cuts through an area of high data density of

Fig. 2. The black bull-eye markers indicate the sparse, biased la-
beled datapoints. The separating hyperplane obtained after learning
is shown for PA (left) and LapPA (right).

Fig. 3. Recognition accuracy when labels come from respective seg-
ments of the rods.

unlabeled data points. Due to the smoothness assumption, it adjusts
the algorithm to take a solution that separates the rods even at data
regions where no labels were observed.

Figure 3 shows the results when the labels are sampled from
different areas of the lower rectangle while only sampling from the
right end of the upper bar. When the labeled segments are far apart,
PA tilts the separating hyperplane to accommodate for a maximum
margin separation based entirely on the labeled data, resulting in
decreased accuracy. When the two segments are at two differing
extreme ends (i.e. Fig 2), the accuracy drops to yield 0.7 with PA,
whilst LapPA still manages to retain the accuracy at over 0.95.

4.2. Kernel classifier

We analyse the two-moons problem (see Fig. 4) often considered as
a proof-of-concept problem in the semi-supervised learning commu-
nity. We define five, evenly distributed segments on each moon, and
evaluate the classification performance on biased label sources. For

Fig. 4. Class boundaries for 2-moons: with class +1 unshaded, class
-1 shaded grey. LapPA (right) shows better class separation than PA
(left).
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Fig. 5. Accuracy rates for PA and LapPA at different p%.

learning, we employ RBF kernels.

Figure 4 shows the effect of PA and LapPA. Unregularized
learning PA fails to capture the extended source of the labels due
to inhomogeneous sampling. In the regularized case, the decision
boundary is improved, and the decision boundary is able to track a
huge proportion of the information provided by the data density.

In Fig. 5 we see the effect of amount of labels provided. LapPA
consistently outperforms PA. Since the PA-algorithm only updates
when a loss on a labeled data is incurred, too few labels (e.g.
p=0.08% labels ≈ 6 labeled points) lead to too few update steps. As
such both algorithm show equally poor performance and accuracy
is low. When sufficient learning opportunities arise, both algorithms
have more opportunities to update the model, and LapPA has the
opportunity to incorporate the manifold information at each update,
resulting in better performance compared to PA.

4.3. Music dataset

We evaluated the algorithm on a music data set. The music data set
is composed of music audio files of two similar classes: piano and
string quartets. We artificially added Gaussian white noises to the
audio files at different signal to noise ratios (SNR) of 25, 30, 35 and
40 dB and the noise free case. We subcategorize the data according
to the noise that were added to the data.

Features were extracted from the 16hHz audio files. We com-
puted spectral centroid, spectral roll, spectral flux, time domain zero
crossings and low-energy. Reference [10] provides a good descrip-
tion of all features used. Furthermore, 13 Mel-Frequency Cepstral
Coefficients (MFCC) are extracted with a window size of 32ms,
with overlapping windows of 16ms. For all features1, we computed
means and variances over 0.8s segments. In a second data reduc-
tion step, the means of these statistics over 25 segments yield a 35
dimensional feature vector for each non-overlapping 20 second seg-
ment. Linear Discriminant Analysis was then performed on the 10
sub-classes. The entire dataset of 1600 songs is represented by a
19080 datapoints, i.e., an average 12 feature vectors (datapoints) per
song.

The songs were randomly shuffled and presented in a stream to
the algorithm. Feature vectors were presented in the order of their
occurrence in the song. Furthermore, no song-boundary information
is provided to the algorithm, i.e., information concerning which fea-
ture vectors belong together is not provided. As a consequence, the
data stream is not composed of i.i.d. samples.

Figure 6 shows the results of our simulations for the linear form
of LapPA with p = 10%. Using LapPA brings a significant im-
provement over PA when labels are sparse and biased.

1Except low-energy, where only means were used

Fig. 6. Results on music data with varying amounts of label infor-
mation provided. String Quartets at SNR 25dB

5. CONCLUSIONS

We derived an update solution for sequential online learning with
manifold regularization applied to the Passive-Aggressive algorithm.
On toy data, regularization improves the cumulative accuracy, when
data fulfil the manifold smoothness constraints.

In our experiments, we did not integrate concept drifts, and it
will be an extension to investigate the effects of concept drift to these
problems. This will also indicate a potential need for adaptive cor-
rections for the hyperparameters such as the window size τ and the
strength of regularization γ.
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