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ABSTRACT
The Dirichlet process can be used as a nonparametric prior

for an infinite-dimensional probability mass function on the

parameter space of a mixture model. The set of parame-

ters over which it is defined is generally used for a single,

parametric distribution. We extend this idea to parameter

spaces that characterize multiple distributions, or modalities.

In this framework, observations containing multiple, incom-

patible pieces of information can be mixed upon, allowing

for all information to inform the final clustering result. We

provide a general MCMC sampling scheme and demonstrate

this framework on a Gaussian-HMM mixture model applied

to synthetic and Major League Baseball data.

Index Terms— Dirichlet process, Bayesian hierarchical

models, hidden Markov model, Gaussian mixture model

1. INTRODUCTION

The Dirichlet process [1] has proven useful in the machine

learning and signal processing communities [2][3][4] as a

nonparametric Bayesian prior for mixture models [5]. The

infinite extent of the Dirichlet process allows for a robust

prior definition on a parameter space that can accommodate

an unlimited number of components. The Dirichlet process

takes two input parameters: a positive scalar, α, and a base

probability measure, G0. Using Sethuraman’s constructive

definition [6] and truncating to a level, K, which can be set

to produce an arbitrarily small error [7], the full generative

process can be written as follows:

Xi ∼ F (θci
) (1)

ci
iid∼ Mult(π) (2)

πj = Vj

∏
l<j

(1 − Vl) (3)

Vj
iid∼ Beta(1, α) (4)

θj
iid∼ G0 (5)

where j = 1, . . . , K and πK is replaced by 1 − ∑K−1
j=1 πj .

We will use the notation π = φK(V ) to represent the trun-

cated function in (3). The hidden data, ci ∈ {1, . . . , K}, acts

as an indicator of which set of parameters, θci
, are used to pa-

rameterize the distribution F (θci) from which observation Xi

is drawn. Because draws from a Dirichlet process, being the

process in (3), (4) and (5), are discrete when α < ∞, these

parameters will repeat, meaning there will be multiple obser-

vations drawn from the same distribution function. This leads

to a clustering of the data, as two observations that share the

same parameters will have similar statistical properties as de-

fined by F (θ). Therefore, the Dirichlet process has found use

in the partitioning of data sets into groups where data within

a group is considered similar and data across groups dissim-

ilar. As K is a variable, it can be set to an arbitrarily large

number, providing a potentially unlimited number of clusters,

or ways in which data can be manifested according to F (θ).
Furthermore, when G0 is conjugate to F (θ), inference is fully

analytical and straightforward.

Many developments of this framework have been pro-

posed in the literature, e.g. [8][4][2], that vary or add to

elements of the generative process of (1)-(5). Each addresses

a potential aspect of mixture modeling not accounted for

in (1)-(5), but easily handled via slight modifications. We

present here our own modification that accounts for the desire

to model data sets where each observation is itself a data set

of multiple modalities, i.e., multiple statistically irreducible

distribution functions, Fm(θ). In this case, each Xi is a set

of observations and each contributes to characterizing the

object of interest. In such cases where multiple pieces of

information are available with which objects can be clus-

tered, it is useful to modify the Dirichlet process to account

for all information when partitioning data into groups. We

call this general framework a Dirichlet process with product
base measure (DP-PBM) as it requires multiple base mea-

sures combined in product form to parameterize the Dirichlet

process.

This paper is organized as follows: In Section 2 we

present the DP-PBM framework and discuss some of its the-

oretical properties. In Section 3, we outline a general MCMC

inference algorithm for DP-PBM mixture models. Exper-

imental results are given in Section 4, where we focus on

a Gaussian-HMM mixture model – one instantiation of the

DP-PBM framework. Results are shown for both synthesized

and Major League Baseball data for the 2007 season.
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2. THE DIRICHLET PROCESS WITH PRODUCT
BASE MEASURE

In this section, we discuss a variant of the Dirichlet process

that incorporates a product base measure, called a DP-PBM,

where rather than drawing parameters for one parametric dis-

tribution, θ ∼ G0, parameters are drawn for multiple distribu-

tions, θm ∼ G0,m for m = 1, . . . , M . In other words, rather

than having a connection between data, {Xi}N
i=1, and their

respective parameters, {θci
}N

i=1, through a parametric distri-

bution, {F (θci)}N
i=1, sets of data, {X1,i, . . . , XM,i}N

i=1 have

respective sets of parameters, {θ1,ci
, . . . , θM,ci

}N
i=1, used in

inherently different and generally incompatible distribution

functions, {F1(θ1,ci
), . . . , FM (θM,ci

)}N
i=1.

The DP-PBM is so called because it utilizes a product

base measure to achieve this end, G0 = G0,1 × G0,2 ×
· · · × G0,M , where in this case, M modalities are consid-

ered. The space over which this process is defined is now(∏M
m=1 Θm,

⊗M
m=1 Bm,

∏M
m=1 G0,m

)
. Though this con-

struction implicitly takes place in all mixture models that

attempt to estimate multiple parameters, for example the

multivariate Gaussian mixture model, we believe our use

of these parameters in multiple, incompatible distributions

(or modalities) is novel. The full generative process can be

written as follows:

Xm,i ∼ Fm(θm,ci
) (6)

ci
iid∼ Mult(π) (7)

πj = Vj

∏
l<j

(1 − Vl) (8)

Vj
iid∼ Beta(1, α) (9)

θm,j ∼ G0,m (10)

for m = 1, . . . , M , where θm,j are drawn iid from G0,m for

a fixed m and independently under varying m. Again, this

process requires truncation to K,with πK = 1 − ∑K−1
j=1 πj .

To make a clarifying observation, we note that if each G0,m

is a univariate normal-gamma prior, this model reduces to a

multivariate GMM with a forced diagonal covariance matrix.

As previously stated, we are more interested in cases where

each Xm is inherently incompatible, but is still linked by the

structure of the data set.

For example, consider a set of observations, {Oi}N
i=1,

where each Oi = {X1,i, X2,i} with X1 ∈ R
d and X2 a

sequence of time-series data. In this case, a single density

function, f(X1, X2|θ1, θ2) cannot analytically accommodate

Oi, making inference difficult. However, if these densities

can be considered as independent, that is f(X1, X2|θ1, θ2) =
f(X1|θ1) · f(X2|θ2), then this problem becomes analytically

tractable and, furthermore, no more difficult to solve than for

the standard Dirichlet process. One might choose to model

X1 with a Gaussian distribution, with G0,1 the appropriate

prior and X2 by an HMM [9], with G0,2 its respective prior.

In this case, this model becomes a hybrid Gaussian-HMM

mixture, where each component is both a Gaussian and a

hidden Markov model.

2.1. Capturing Correlations Across Modalities

As alluded to in the previous section, the analytical nature

of the DP-PBM framework depends upon a factorization

of the likelihood function. That is, for the likelihood func-

tion of our M -modality data, we assume that we can write

f(X1, . . . , XM |θ1, . . . , θM ) =
∏M

m=1 fm(Xm|θm), where

fm(Xm|θm) is the likelihood function and θm the parameter

(or set of parameters) for the mth modality. As will be seen in

the next section, inference then becomes analytical, provided

the appropriate priors, p(θm), are selected, as the different

modalities are all drawn independently conditioned upon the

latent indicator, c, which selects the set of parameters for all

M distribution functions.

Because of this independence assumption, it might seem

that the model will not capture any correlations within the

data across modalities. While it is true that this ability is not

given to the prior, the posterior will capture correlations. For

example, given the posterior for N observations, consider an

N + 1st observation where the first M − 1 modalities are

present, but the M th is missing. If we wish to infer its as-

sociated latent indicator, cN+1 (or which component it came

from), we can simply calculate for the first M − 1 modalities

P (cN+1 = j|X, θ) ∝ πj

M−1∏
m=1

fm(xm,N+1|θm,j) (11)

thereby effectively integrating out the M th modality. We see

that, given the distribution on cN+1, we can then interpolate

or make predictions as to the missing modality, xM,N+1. An

MCMC inference algorithm in the next section will allow for

a closer look at the functioning of the model.

3. MCMC INFERENCE FOR DP-PBM MIXTURE
MODELS

In this section, we outline a general method for performing

Markov chain Monte Carlo (MCMC) [10] inference for DP-

PBM models. We let fm(xm|θm) be the likelihood function

for the mth modality of an observation given the parameters,

θm, and p(θm) the prior density of θm. For compactness,

we refer to the DP-PBM as G (as is typical in the literature),

where G =
∑K+1

j=1 πj

∏M
m=1 δθm,j

. We also observe that this

sampling method is unbounded in the potential number of

components, but only requires the K occupied components

plus a K + 1st proposal component for any given iteration.

Initialization: Select a truncation level, K + 1, and initialize

the model, G, by sampling θm,k ∼ Gm,0 for k = 1, . . . , K +
1, m = 1, . . . , M and Vk ∼ Beta(1, α) for k = 1, . . . , K
and construct π = φK(V ).
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Step 1: Sample the indicators, c1, . . . , cN , independently

from their respective conditional posteriors, p(cj |{xm,1}M
m=1) ∝∏M

m=1 f(xm,j |θm,cj
)p(θm,cj

|G),

cj ∼
K+1∑
k=1

πk

∏M
m=1 fm(xm,j |θm,k)∑

l πl

∏M
m=1 fm(xm,j |θm,l)

δk (12)

Set K to be the number of unique values among c1, . . . , cN

and relabel from 1 to K.

Step 2: Sample {θm,1}M
m=1, . . . , {θm,K}M

m=1 from their re-

spective posteriors conditioned on c1, . . . , cN and x1, . . . , xN ,

θm,k ∼ p
(
θm,k|{cj}N

j=1, xm,1, . . . , xm,N

)
(13)

p
(
θm,k|{cj}N

j=1, xm,1, . . . , xm,N

) ∝
N∏

j=1

(
f(xm,j |θm)δcj

(k)
)

p(θm) (14)

where δcj
(k) is a delta function equal to one if cj = k and

zero otherwise, simply picking out which {xm,j}M
m=1 belong

to component k. Sample θm,K+1 ∼ G0,m for m = 1, . . . M .

These M posteriors are calculated independently of one an-

other given the relevant data for that modality extracted from

the observations assigned to that component. We stress that

when an “observation” is assigned to a component (via the

indicator, c) it is actually all of the data that comprise that

observation that is being assigned to the component.

Step 3: Construct the (K + 1)-dimensional weight vector,

π = φK(V ), using V1, . . . , VK sampled from their Beta-

distributed posteriors conditioned on c1, . . . , cN ,

Vk ∼ Beta

⎛
⎝1 +

N∑
j=1

δcj
(k), α +

K∑
l=k+1

N∑
j=1

δcj (l)

⎞
⎠ (15)

Set πK+1 =
∏K

k=1(1 − Vk).

Repeat Steps 1 – 3 for a desired number of iterations. The

convergence of this Markov chain can be assessed [10], after

which point uncorrelated samples (properly spaced out in the

chain) of the values in Steps 1 – 3 are considered iid samples

from the posterior. As can be seen, inference for DP-PBM

models is fairly straightforward and, when each p(θm) is con-

jugate to f(xm|θm), fully analytical.

4. APPLICATIONS: THE GAUSSIAN-HMM
MIXTURE MODEL

We look at a concrete example of a DP-PBM model, a

Gaussian-HMM mixture model, where modality one is data

X1 ∈ R
d and modality two is a sequence drawn from a

hidden Markov model [9], X2 ∼ HMM(A,B, π′). Our

experiments are performed on synthesized and Major League

Baseball (MLB) data sets.

4.1. Experiment with Synthesized Data

We define three, two-dimensional Gaussian distributions with

respective means μ1 = (−3, 0), μ2 = (3, 0) and μ3 = (0, 5)
and each having the identity as the covariance matrix. Two

hidden Markov models are defined as below,

A1 =

⎡
⎣

0.05 0.9 0.05
0.05 0.05 0.9
0.9 0.05 0.05

⎤
⎦ A2 =

⎡
⎣

0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

⎤
⎦

B1,B2 =

⎡
⎣

0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

⎤
⎦

with the initial state vector π′
1,π

′
2 = [1/3, 1/3, 1/3]. Data

was generated as follows: We sampled 300 observations, 100

from each Gaussian, constituting X1,i for i = 1, . . . , 300.

For each sample, if the observation was on the right half of its

respective Gaussian, a sequence of length 50 was drawn from

HMM 1, if on the left, from HMM 2. For display purposes,

we select a typical sample from MCMC inference.

This precisely defined data set allows the model to clearly

display the benefits of its design. If one were to build a Gaus-

sian mixture model on the X1 data alone, three components

would be uncovered, as shown in Figure 1(a). If an HMM

mixture were built alone on the X2 data, only two components

would be uncovered. Using all of the data, that is, mixing on

{Oi}300
i=1 rather than just {X1,i}300

i=1 or {X2,i}300
i=1 alone, the

correct number of six components was uncovered, as shown

in Figure 1(b).

(a) (b)

Fig. 1. An example of a mixed Gaussian-HMM data set. (a)

Gaussian mixture model results. (b) Gaussian-HMM mixture

results. Each ellipse corresponds to a cluster.

The results show that, as was required by the data, the

DP-PBM prior uncovered six distinct clusters of data. The

DP-PBM framework allowed for the incorporation of all in-

formation of the data set to be included, thus providing more

precise clustering results.
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4.2. Major League Baseball Data Set

Using the complete bat-by-bat statistics for the 2007 sea-

son1, we processed our data set as follows. We created a

3-dimensional vector, X1, of the batting average, on-base

percentage and slugging percentage. We then quantized the

plate appearances for a given player into the following codes:

1. Strikeout, 2. Fielded out, 3. Hit, where walks and other

results were ignored. We limited our set to the 252 players

with a sequence length greater than 300. For MCMC, we

used 1000 burn-in and 3000 burn-out iterations and selected

an iteration of median likelihood for presentation below. We

also show results for an HMM mixture model [11] without

using the spatial data. The component membership results, or

the number of observations that were assigned to a given in-

dexed component, are shown in Figure 2 for both models. We

see that using additional information produces a more refined

clustering result, as was the case in the synthetic result.

(a) (b)

Fig. 2. Component membership results for MLB data when

(a) X1 data is ignored – the HMM mixture model. (b) both

X1 and X2 data is used – the Gaussian-HMM mixture model.

We next ask whether the increase in the number of clusters

results in a more precise and informative clustering result. To

do this we consider two measures, first the average differen-

tial entropy of the Gaussian component, where we empirically

calculated the covariance from the HMM mixture results.

havg(X1) =
K∑

i=1

πi
1
2

ln
(
(2πe)3|Σi|

)
(16)

We recall that differential entropy can be negative and that

havg(X1) → −∞ as the uncertainty tends to zero. Using this

measure for the HMM mixture, havg(X1) = −6.31, while for

the Gaussian-HMM mixture, havg(X1) = −7.11, indicating

that the Gaussian-HMM more precisely represented the spa-

tial information, thus improving clustering.

As a second measure, we consider the average entropy of

each HMM, which is estimated using the original data

Havg(X2) = −
K∑

i=1

πi

Ni∑
n=1

1
Ni

lnP (X2,ρi(n)|Ai, Bi, π
′
i)

(17)

1Data was obtained from www.retrosheet.org

where Ni is the number of data in component i, with ρi(n)
selecting the appropriate X2. Using this measure, for the

HMM mixture we found that, Havg(X2) = 477.4, and for

the Gaussian-HMM mixture, Havg(X2) = 476.7. Therefore,

performance for the HMM is comparable. This is reasonable

when viewed in light of the synthetic example. We’ve there-

fore seen that clustering with all data tends to improve the

overall result as it refines the clustering in a meaningful way.

5. CONCLUSIONS

We have derived an extension of the Dirichlet process that

mixes on all data in an observation by using a product base

distribution, which can accommodates multiple modalities.

As an example, we developed the Gaussian-HMM mixture

model, where each component generated data from both

a multivariate Gaussian distribution and a hidden Markov

model, which comprised the complete observation. Experi-

mental results showed the functioning of this model on both

synthesized and MLB data for clustering.
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