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ABSTRACT

The Expectation-Maximization (EM) algorithm is one of the
most popular algorithms for parameter estimation from in-
complete data, but its convergencecan be slow for some large-
scale or complex problems. Extrapolation methods can effec-
tively accelerate EM, but to ensure stability, the learning rate
of extrapolation must be compromised. This paper describes
the TJ2aEMmethod, a targeted extrapolation method that can
extrapolate much more aggressively than competing methods
without causing instability problems. We analyze its conver-
gence properties and report experimental results.

Index Terms— Eigenvalues and eigenfunctions, Param-
eter estimation, Extrapolation, Convergence of numerical
methods, Acceleration

1. INTRODUCTION

Let θ ∈ R
d be a d-dimensional parameter vector for a proba-

bilistic model to be trained by an EMmappingM : R
d → R

d

which ensures thatL(M(θ)) ≥ L(θ), L is the data likelihood.
Starting from θ(0), the EM algorithm applies M to θ(0) iter-
atively until convergence to a local optimum θ∗ that satis�es
θ∗ = M(θ∗). One of the effective approach to accelerating
the EM algorithm is the parameterized EM (pEM) algorithm,
which extrapolate along the direction to the EM estimate with
a learning rate η. Let Mη : R

d → R
d be the pEM mapping

de�ned by:
Mη(θ) ≡ θ + η(M(θ) − θ). (1)

It can be shown that with a constant η ∈ (1, 2), pEM is guar-
anteed to converge, but it is usually too conservative to gain
suf�cient speedup. An optimal learning rate can be derived
for pEM-like extrapolation [1] but in practice it is dif�cult
to obtain this learning rate because it depends on the max-
imal and minimal eigenvalues of the Jacobian J of the EM
mapping. In fact, the extrapolation can be made more ag-
gressive to further accelerate the EM algorithm. Adaptive
overrelaxed EM (aEM) [2] increases η by a constant ratio at
every iteration if the pEM extrapolation increases the likeli-
hood and resets η to one otherwise. aEM is guaranteed to
converge because at each iteration, when an aEM step fails

to improve the likelihood, it will backtrack to a plain EM
step to guarantee monotone improvement of the likelihood.
Staggered EM [3] estimates the maximal eigenvalue of J to
obtain the upper bound of η and then rotates among learn-
ing rates within the bounded range in a prede�ned order or
at random. Since these methods con�ne the range of the ad-
justment, their extrapolation may not be aggressive enough
to achieve substantial speedup in some cases. More recently,
the ε-accelerated EM [4] was proposed based on the vector ε
algorithm [5], which was originally designed to accelerate a
slowly convergent sequence. Varadhan and Roland proposed
the SQUAREM algorithm [6], which extrapolates to a param-
eter vector on the straight line across two consecutive EM es-
timates in the parameter space such that this parameter vector
is estimated to be the closest to the local optimum. However,
they share a common disadvantage that they focus too much
on accelerating slowly converged dimensions only.

We identi�ed a key issue of pEM that prevents it from us-
ing an aggressive learning rate. The issue is that when we
apply a learning rate that exceeds the proper range, the eigen-
value for a fast converging dimension of the Jacobian of the
mapping will become negative. When the eigenvalue is less
than −1, the extrapolation may bring the search away from
the local optimum. In this paper, we describe a simple but
effective solution to ensure that all eigenvalues including the
minimal one are non-negative. We integrated this solution to
aEM and the triple jump EM method (TJEM) [7] to derive
a new method called TJ2aEM, which has the advantage of
aEM but can extrapolate much more aggressively to achieve
a much higher acceleration. In the remainder of this paper,
we present the derivation of this method, analyze its conver-
gence properties, and empirically demonstrate its effective-
ness in comparison with aEM. Due to the page limit, proofs
of lemmas and propositions can be found in [8].

2. THE TRIPLE JUMPMETHOD

Assuming that the EM mapping M is differentiable. We can
apply a linear Taylor expansion of M around θ∗ so that

θ(t+1) = M(θ(t)) ≈ θ∗ + M ′(θ∗)(θ(t) − θ∗) (2)

= θ∗ + J(θ(t) − θ∗), (3)
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where J abbreviatesM ′(θ∗), the Jacobian of EM at θ∗. From
Eq. 3, we can derive Aitken’s acceleration, which is the fun-
damental principle of pEM:

θ(t+1) = θ(t) + (I − J)−1(M(θ(t))− θ(t)).

Comparing this with Eq. 1, we can see that pEM is optimal
when η = (I − J)−1. However, it is usually prohibitively ex-
pensive to exactly compute J . Instead, a well-known method
is to replace J with its largest eigenvalue λmax to approx-
imate J . We can use two consecutive EM estimates [9] to
estimate λmax by

γ(t) ≡ ‖M(θ(t))− θ(t)‖
‖θ(t) − θ(t−1)‖ . (4)

Fraley [10] empirically assessed the accuracy of this estimate
and showed that it is reasonably good, especially when there
are high percentages of missing data. It can also be shown
that as t → ∞, γ(t) ≤ λmax asymptotically in the neigh-
borhood of θ∗ [3]. With the estimated eigenvalue, Aitken’s
acceleration becomes:

θ(t+1) = θ(t) + (1− γ(t))−1(M(θ(t))− θ(t)). (5)

We named this method as triple jump EM (TJEM) because
its search path is similar to the hop, step and jump phases in
triple jump [7]. We can accelerate TJEM further by replacing
the EMmapping with a pEMmappingMη in Eq. 4 and 5. Let

θ
(t)
η ≡ Mη(θ(t)), we have

γ(t)
η ≡ ‖θ(t)

η − θ(t)‖
‖θ(t) − θ(t−1)‖ (6)

for the eigenvalue estimation and

θ(t+1) = θ(t) + (1− γ(t)
η )−1(θ(t)

η − θ(t)) (7)

for extrapolation. We will refer to this mapping as the TJpEM
mapping.

3. CONVERGENCE PROPERTY ANALYSIS

The rate of convergence of a �xed-point iteration mappingM
is determined by the spectral radius ρ of its Jacobian J . For
a pEM mappingMη, the i-th eigenvalue, denoted by ληi, can
be expressed as

ληi = (1 − η) ∗ 1.0 + ηλi, (8)

where λi is the i-th eigenvalue of J of the EM mapping. For
TJpEM, its rate of convergence is determined by the spectral
radius of the Jacobian of the composition of the two mappings
at θ∗:

M ′
γη

(Mη(θ∗))M ′
η(θ∗) = M ′

γη
(θ∗)M ′

η(θ∗) = JγηJη.

Lemma 1 gives the eigenvalues of JγηJη.

Lemma 1 The i-th eigenvalue of the Jacobian of Mγη ◦Mη

at θ∗ with estimated spectral radius γ
(t)
η is

ληi
ληi − γ

(t)
η

1− γ
(t)
η

.

To compare the spectral radii of TJEM and TJpEM, we as-
sume that Eq. 8, the relation between the eigenvalues for the
Jacobians of the EM and pEM mappings, holds for the esti-
mated spectral radii γ(t) and γ

(t)
η :

γ(t)
η = 1− η + ηγ(t).

Now, consider a Jacobian of the EM mapping with 19
distinct eigenvalues λi, i = 1, . . . , 19. Assume further that
λi = 0.05 ∗ i. It follows that λmin = 0.05 and λmax = 0.95.
Suppose TJEM estimates λmax as γ(t) = 0.83, an inaccu-
rate underestimate. Then according to Eq. 8 and Lemma 1, if
we choose η = 1.2 for TJpEM, we will have ληmin, ληmax,
and γ(t) to be −0.14, 0.94, and 0.796, respectively, and if
we choose η = 1.6, −0.52, 0.92, and 0.728, respectively.
Fig. 1(a) illustrates the absolute eigenvalues of TJEM and
TJpEM with these different learning rates. We can clearly
observe the tendency that, with the growth of η, the peak of
the concave curves in the middle in Fig. 1(a) decreases grad-
ually, but the end of the left tails increases drastically. The
�gure illustrates that TJpEM can converge faster TJEM with
a proper learning rate (e.g. η = 1.2), while slower or even
diverge with a large (e.g. η = 1.6).

Then, we change λmin and keep the other eigenvalues un-
changed to see how sensitive the spectral radius is to λmin and
plot the result in Fig. 1(b), which shows that when λmin <
0.03, the spectral radius increases linearly as λmin decreases.
The result shows that the spectral radius may be in�uenced by
slight changes to λmin. We can thus derive an upper bound
of η for TJpEM guaranteed to converge faster than TJEM.
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Fig. 1. Impact of Negative Eigenvalues

Proposition 2 Within the neighborhood of θ∗, TJpEM with

η <
1+ γ

4
1−λmin

can converge faster than TJEM, under the as-

sumption that γ
(t)
η = 1− η + ηγ(t).
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4. DOUBLE EXTRAPOLATION

Proposition 2 implies that TJpEM converges faster than
TJEM with a proper learning rate, but when the learning
rate exceeds the proper range, TJpEM might converge slower
due to a large-sized negative eigenvalue. We now present
a simple solution that can constrain the size of the spectral
radius. The key idea is to apply double extrapolation that
combines two pEM extrapolations into one. Then our map-
ping will be M2

η , whose Jacobian J2
η = QΛ2

ηQ−1, where Λ2
η

will contain no negative eigenvalue. We will call this method
as TJ2pEM. Its derivation is as follows:

θ∗ = θ(t−1) +
∞∑

h′=0

(θ(t+2h′+1) − θ(t+2h′−1)) (9)

≈ θ(t−1) +
∞∑

h′=0

J2h′
(θ(t+1) − θ(t−1))

= θ(t−1) + (I − J2
η )−1(θ(t+1) − θ(t−1))

Again, we replace θ(t+1) with θ
(t)
η and use γ

(t)
η as in TJpEM

to replace Jη to obtain the extrapolation mapping of TJ2pEM:

θ(t+1) = θ(t−1) + (1− (γ(t)
η )2)−1(θ(t)

η − θ(t−1)). (10)

Note that instead of extrapolating from θ(t), TJ2pEM extrap-
olates from θ(t−1) at the t-th iteration. The next lemma gives
the eigenvalues of the Jacobian of the TJ2pEM mapping.

Lemma 3 The i-th eigenvalue λγ2
ηi of the Jacobian of the

TJ2pEM mapping is:

λγ2
ηi =

(ληi)2 − (γ(t)
η )2

1− (γ(t)
η )2

.

Proposition 4 Given the same η, TJ2pEM can converge
faster than TJpEM if ληmin < − 1

2 and ληmax ≤ 1+
√

2
2 γ

(t)
η .

Proposition 4 suggest that TJ2pEM will successfully al-
leviate the impact of negative eigenvalues ληmin of TJpEM
due to a large learning rate η. Another factor that in�uences
ληmin is λmin. Fig. 2 illustrates how λmin may affect ληmin.
With the same example as in Fig. 1, Fig. 2(a) shows the ab-
solute eigenvalues of TJ2pEM with η = 1.4, 1.6, and 1.8.
The curves have no left tail and a large η produces a smaller
spectral radius. Fig. 2(b) shows that changes to λmin will
not affect the spectral radius here, suggesting that TJ2pEM is
barely affected by λmin.

5. THE TJ2AEMMETHOD

Previously, Salakhutdinov et al. [2] showed that dynamically
adjusting the learning rate for pEM will achieve a higher
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Fig. 2. Effect of Double Extrapolation

speedup than using the optimal learning rate at all iterations.
However, the range of adjustment can only be con�ned in
a proper range, otherwise, as discussed in the previous sec-
tions, a large sized negative eigenvalue may appear in the
Jacobian. Now that we have solved this issue, we can replace
the pEM mapping in TJ2pEM with aEM to take advantage
of both targetted aggressive extrapolation by the triple jump
method and dynamic adjustment of the learning rate. We can
establish that TJ2aEM converges faster than TJ2pEM in the
neighborhood of the local optimum.

Proposition 5 Let η(1) = η∗ + Δ and η(2) = η∗ −Δ, where
Δ is an arbitrary constant between 0 and 1. Let λ be the
eigenvalues of the Jacobians of the mappings indicated by
its subscripts. The spectral radius of TJ2aEM with alternat-
ing learning rates η(1) and η(2) will be smaller than that of
TJ2pEM with η∗.

Proof The spectral radius of TJ2aEM is

|λγ2
η(1) iλγ2

η(2) i|

=
(λη(1)i)2 − (λη(1)max)2

1− (λη(1)max)2
· (λη(2)i)2 − (λη(2)max)2

1− (λη(2)max)2

∝ (λη(1)i + λη(1)max)(λη(2)i + λη(2)max)
(1 + λη(1)max)(1 + λη(2)max)

=
(λη∗i + λη∗max)2 − (Δ(2 − λi − λmax))2

(1 + λη∗max)2 − (Δ(1 − λmax))2

≤ (λη∗i + λη∗max)2 − (Δ(1 − λmax))2

(1 + λη∗max)2 − (Δ(1 − λmax))2

≤ (λη∗i + λη∗max)2

(1 + λη∗max)2
.

When Δ = 0, |λγ2
η(1) iλγ2

η(2) i| = |λγ2
η∗ i|2, the spectral radius

of TJ2pEM. The above inequality implies that |λγ2
η(1) iλγ2

η(2) i|
with Δ = 0 is smaller than |λγ2

η∗ i|2.
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6. EXPERIMENT

We compared the acceleration performance of pEM with an
optimal learning rate and two algorithms that dynamically
adjust their learning rates, aEM and TJ2aEM, for training
a mixture-of-Gaussian (MoG) model, where we have �ve
equally-weighted 2D Gaussians with means at {(0, 0), (0, 1),
(1, 0), (0,−1), (−1, 0)} and variances 0.8. We randomly
sampled 2,000 cases to form the experimental data set. We
empirically determined the optimal learning rate η∗ for the
MoG as follows. First, we ran EM with a tiny threshold
(1.0e− 11) and kept track of the parameter vectors searched
and their likelihood. It took the EM algorithm 4,885 iterations
to converge. We chose θ(501) obtained by EM as the initial
value because it is near the local optimum θ∗. Then, we tried
pEM with various learning rates η and found that η∗ = 1.96
is the optimal learning rate.

After that, we ran both aEM and TJ2aEM from θ(501). At
each iteration, they dynamically adjust their learning rates.
For aEM, its learning rate is adjusted by η(t+1) = 1.1η(t),
while for TJ2aEM, η is dynamically assigned to 1.2, 1.4, 1.6,
or 1.8 in a zigzag manner. With a different η, TJ2aEM will
come up with a different estimate γη at each iteration, and
use the effective learning rate 1

1−γη
to perform double extrap-

olation (see Eq. 5)We compared the effective learning rate of
TJ2aEM and the learning rate of aEM at each iteration, as
shown in Fig 3. We can see that aEM increases its learning
rate linearly until it reaches a point where it cannot satisfac-
torily improve the likelihood, while TJ2aEM adjusts its effec-
tive learning rate irregularly and much aggressively. TJ2aEM
may adjust its learning rate to up to our prede�ned upper
boundmany times while aEM only reaches as high as 14 once
and usually stops at 9. In the end, the elapsed iterations for
TJ2aEM and aEM are 527 and 766, respectively. Both outper-
form pEM with a �xed optimal learning rate, which required
1,327 iterations to converge.
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0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

22

Iteration

Le
ar

ni
ng

 R
at

e

aEM

η*

(b) Learning rates used by aEM

Fig. 3. Trace of learning rates used by TJ2aEM and aEM as a
function of iterations.

7. CONCLUSION

We have presented TJ2aEM, a targetted extrapolation method
to accelerate the convergence of EM. TJ2aEM extrapolates

aggressively along with a dynamic learning rate. We con-
tribute new ideas to explore for further acceleration. The �rst
is that a mapping whose Jacobian contains negative eigenval-
ues, like pEM, can still achieve speedup. Traditionally, only
mappings with semi-positive de�nite Jacobians are consid-
ered. The second is that negative eigenvalues can be handled
by double extrapolation.
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