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ABSTRACT

We address multistream sign language recognition and focus on ef-
ficient multistream integration schemes. Alternative approaches are
investigated and the application of Product-HMMs (PHMM) is pro-
posed. The PHMM is a variant of the general multistream HMM
that also allows for partial asynchrony between the streams. Exper-
iments in classification and isolated sign recognition for the Greek
Sign Language using different fusion methods, show that the PH-
MMs perform the best. Fusing movement and shape information
with the PHMMs has increased sign classification performance by
1,2% in comparison to the Parallel HMM fusion model. Isolated
sign recognition rate increased by 8,3% over movement only mod-
els and by 1,5% over movement-shape models using multistream
HMMs.

Index Terms— sign language recognition, Product HMM, inte-
gration, asynchrony, HMM+

1. INTRODUCTION

Sign languages, i.e., languages that essentially convey information
via visual patterns, commonly serve as an alternative or complemen-
tary mode of human communication [1]. Visual patterns, as opposed
to the audio ones used in the oral languages, are formed by hand
shapes and hand or general body motion, lip movements and fa-
cial expressions. Their expressiveness facilitates human interaction
and exchange of information not only in the existence of hearing-
impaired people but also in situations where speech is impractical,
e.g., in loud workspaces. However, efficient communication by these
means is only feasible between specially trained interacting parties.
In this context, automatic sign-to-text and text-to-sign translation can
be viewed as the intermediate technological modules that can par-
tially lift this restriction. In our work, we address the problem of au-
tomatic sign language recognition (sign-to-text) and we investigate
schemes to efficiently handle the multistream/multimodal character
of this task.

The field of sign language recognition is certainly in the focus
of quite intense research lately [2]. It is considered to be a multilevel
problem and it poses significant challenges regarding data collec-
tion, visual processing, i.e., hand localization, tracking and feature
extraction, information stream modeling for recognition and general
language modeling. Bowden and his colleagues, [3], to cope with
limited training data, proposed a two stage classification procedure
and achieved 97.67% classification rate for a lexicon of 43 words us-
ing only single instance training. At the initial stage, a high level de-
scription of hand shape and motion was extracted while at the second
classification stage the temporal transitions of individual signs were
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also taken into consideration. For this purpose, a classifier bank of
Markov chains was applied in combination with Independent Com-
ponent Analysis.

For modeling, many previous approaches build on experience
gained from the corresponding area of speech recognition. Bauer et
al., [4], based on a 97-sign vocabulary of the German Sign Language
used Hidden Markov Models (HMMs) creating one model per sign.
The signer wore colored cotton gloves and the extracted features in-
cluded the position of both hands, distances between all fingers and
distances between the hands. They also implemented a language
model and finally achieved 93.2% recognition accuracy.

To effectively handle the multiple information streams apparent
in sign languages, e.g., left and right hand or head movement, Vogler
and Metaxas [5] moved one step further and applied the so-called
Parallel HMMs. Their basic assumption is that the involved streams
essentially evolve independently. Though it is accepted that this is
due to an engineering tradeoff and not valid in reality it can lead to
significant improvements compared to the single stream HMM ap-
proach. Their experiments were on continuous American sign lan-
guage recognition based on a 22-sign vocabulary. They broke down
signs into their constituent phonemes using the basic ideas of the
Movement-Hold model [6]. They also broke up the features into
movement and shape channels. The former comprises features re-
lated to the location and movement of the hands while the latter
describes the handshape. To handle these two channels they used
Parallel HMMs (PaHMMs) and achieved 96.15% word accuracy in-
creasing recognition rate by 1.6% over movement-only models.

In our current work, we focus on the multistream character of
sign languages. We investigate alternative multistream integration
approaches for sign language recognition in an effort to account for
possible interstream interactions. We regard hand movement and
hand shape as separate streams and, motivated by analogous work
in audio-visual speech recognition, we apply the so-called Product
HMM to model each sign. Our classification and recognition experi-
ments for the Greek Sign Language (GSL) and a 93-sign vocabulary
demonstrate that it can be quite beneficial to consider the separate
information streams as partially interacting and not completely in-
dependent.

2. MULTISTREAM FUSION FOR SIGN LANGUAGE
RECOGNITION

The goal of automatic sign language recognition, may be viewed as
the recovery of a sign sequence S from the sequence of observa-
tions O. Given the multicue nature of the visual patterns forming the
sign sequence it is essential that these observations represent infor-
mation conveyed by all involved information channels. Hand shapes
and movement, the body pose, face expression and head movement
should all be taken into consideration in the general case [2]. Ne-
glecting for example the hand movement would not allow disam-
biguation of the GSL signs for ‘circle’ and ‘I have an idea’ since the
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same handshape is used for both, i.e., fist with the index finger pro-
jected shown in Figs. 1(a),1(b). The movement of the dominant hand
is quite distinct for the two signs though. Observations from these
different channels are supposed to form separate streams which may
then be exploited in appropriate fusion schemes, either synchronous
or asynchronous.

(a) Sign ‘circle’ (b) Sign ‘I have an idea’

(c) Movement channel (d) Handshape channel

Fig. 1. Examples of the Greek Sign Language signs ‘circle’ and ‘I
have an idea’. In the bottom row, observations for the sign ‘circle’
are shown: on the left, the coordinates (x,y) of the dominant hand
from the movement channel and, on the right, the eccentricity, com-
pactness and ratio from the handshape channel.

2.1. Synchronous Fusion

2.1.1. Feature Fusion

The so-called feature fusion scheme, also known as early integra-
tion, is the simplest case and is based on the assumption that the
involved streams are synchronous and there is no need for any kind
of stream-dependent treatment. Given time-synchronous movement
and handshape feature vectors om,t and oh,t, respectively, feature
fusion considers

ot = [om,t,oh,t] ∈ R l , l = lm + lh (1)

as the joint observation of interest, modeled by a single-stream
HMM as:

P [ ot | c ] =

JcX

j=1

wcj Nl(ot ; mcj , scj) (2)

where c ∈ C denote the HMM context dependent states, Jc de-
notes the number of mixtures, wcj are the mixture weights and
Nl(o ; m , s ) is the l-variate normal distribution with mean m and
a diagonal covariance matrix s.

2.1.2. State-Synchronous Multi-Stream HMM

In state-synchronous multi-stream HMMs though still the streams
share common underlying state dynamics (Fig. 2 for the case of
movement and handshape streams), each stream may be separately

weighted. The observation likelihood of the multi-stream HMM is
the product of the observation likelihood of each single-stream raised
to an appropriate stream weight [7]:

P [ ot | c ] =
Y

s∈{M,H}
[

JscX

j=1

wscj Nls(ost ; mscj , sscj) ] λsct (3)

where λsct are the stream weights, that are positive and are related to
the reliability of the information each stream carries or to other prior
discriminative criteria. For example, the involvement of the stream
carrying information for the movement of the non-dominant hand,
e.g., the left one for the signs shown in Fig.1, should be considered
of secondary importance and thus weighted less.

M1H1

Exit 
StateEntry 

State
M2H2 M3H3 M4H4

Fig. 2. Example of a multi-stream HMM with 2 streams and 4
states. Each state is shared by both the movement (M) and hand-
shape streams (H).

2.2. Asynchronous Fusion Approaches

2.2.1. Parallel HMM

The feature fusion and the synchronous multi-stream model we dis-
cussed enforce state synchrony between information streams. This
is quite restrictive and it has been shown that can limit recognition
performance [5].

Parallel HMMs (PaHMMs) are on the opposite extent in terms
of interstream synchrony related restrictions. They are an extension
to HMMs and they have been applied for sign language recognition
[5] based on the assumption that the separate streams evolve inde-
pendently from one another with independent output. As a conse-
quence, it is possible to train the single-stream HMMs completely
independently from the other streams, and put streams together at
the recognition time using the appropriate stream weights (see Fig.
3).

S

S E

EM1 M2 M3

H1 H2 H3

Movement Stream

Handshape Stream

max
Q(M),Q(H)

∑

s∈{M,H}
ω(s)logP (Q(s), O(s)|λ(s))

Fig. 3. Example of a Parallel HMM with 2 streams and 3 states in
each stream.

2.2.2. Product HMM

Somewhere between the completely synchronous fusion scheme and
Parallel HMMs lies the so-called product HMM [8, 9] (see Fig.
4), which has been quite successfully applied in audiovisual speech

1602



recognition. It allows streams to be in asynchrony within the model
but forces them to be in synchrony at the model boundaries. As is
shown in Fig. 4 each state of PHMM is a combination of the two
streams. The Product-HMM is essentially obtained as the ‘product’
of the single-stream HMMs.

M1H1 M1H2

M2H1 M2H2

M3H1 M3H2
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am

Handshape Stream

Exit 
State
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M4H1 M4H2

M1H3 M1H4

M2H3 M2H4

M3H3 M3H4

M4H3 M4H4

Fig. 4. Example of a product HMM with 2 streams and 4 states in
each stream. The movement and handshape streams are denoted by
Mx and Hy , where x,y are the states of the movement and handshape
stream model respectively.

Product HMMs also permit the control of the degree of asyn-
chrony between streams by discarding states from the lattice, e.g.,
in Fig. 4, if we discard from the lattice all the states and transitions
marked with dashed lines we restrict the asynchrony between the two
streams to be up to 1 state. In the two extreme cases when only the
states that lie on the diagonal or all the states in the lattice are kept,
the model becomes equivalent to the synchronous multi-stream and
Parallel HMM respectively.

3. EXPERIMENTS

Evaluation of the presented fusion schemes was performed exper-
imentally. Our sign database comprises 691 training and 110 test
sign instances over a vocabulary of 93 signs. These were randomly
selected and results were acquired for 10 repetitions (repeated hold-
out method). We performed all training and testing using the Hidden
Markov Model Toolkit (HTK) [11].

3.1. System Overview

In our system, a single camera in front of the signer is used for video
acquisition. Then an image processing system is applied for segmen-
tation and different features are extracted [10]. We divide our fea-
tures into two different channels (movement and handshape). The
movement channel consists of the location and movements of the
signer’s hands and head. Movement feature vectors are of dimen-
sion 6 and comprise the position coordinates of the hand normal-
ized with reference to the position coordinates of the head, the first
derivatives of these and the distance between the two hands. The
handshape channel essentially includes features related to the shape
of the dominant hand. Handshape feature vectors are of dimension
4 and are region-based features. These include the area of the hand-
shape, its eccentricity, its compactness which is the ratio of its area
and its perimeter squared and the ratio of its minor and major axis
lengths (see Fig. 1).

3.2. Classification Experiments

As mentioned in Section 2.2, state synchrony between movement
and handshape channels is quite restrictive, so we tried to model
stream asynchrony using Product HMMs (PHMMs), taking advan-
tage of the ability they have to control the degree of asynchrony
between streams. Classification results per experiment repetition
are depicted in Fig. 5 and allow the comparison among the various
stream fusion approaches, i.e., using state-synchronous multi-stream
HMMs, PaHMMs and PHMMs. As we can see, using PHMMs
we obtain the best performance. Recognition accuracy is increased
by 56% over handshape-only, 5,97% over movement-only models
(these results are not shown in the graph), 1,37% over synchronous
multi-stream and 1,19% over PaHMMs (absolute percentage differ-
ences).
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Fig. 5. Classification results per experiment repetition for fu-
sion using state-synchronous Multi-stream HMM, Parallel HMM
(PaHMM) and Product HMM (PHMM).

In our experiments using Product HMMs (PHMM) we first train
each stream separately based on single-stream observations, then
combine them creating the Product HMM and re-train both streams
together. Stream weights λm = 5, λh = 3 and asynchrony between
the two streams up to 2 states were applied.
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Fig. 6. A Product HMM with 2 streams using 5 and 6 states for each
stream respectively and asynchrony between the two streams up to 2
states. The red dashed line follows the common paths in the Product
HMM.
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In Fig. 6 we show with dashed line the paths mostly followed
by the test data in the Product HMM when only 2-state asynchrony
has been allowed between the two streams. As we can see extreme
paths are most often followed, taking advantage of Product HMMs
property that allows state asynchrony between streams. By increas-
ing the degree of asynchrony between the streams over 2 states, we
observe that more centered paths are followed and recognition accu-
racy decreases. We may thus assume that movement and handshape
streams are neither synchronous neither completely independent and
the Product HMMs offers sufficient modeling flexibility to account
for this specifity.

3.3. Isolated Sign Recognition Experiments

Beyond classification, we also experiment with isolated sign recog-
nition. We test feature fusion method (FF) as we describe in Sec-
tion 2.1.1, fusion using one state-synchronous multi-stream HMM
(MS1) training each stream separately based on single-stream obser-
vations and subsequently combine them as in Eq.(3) as well as one
state-synchronous multi-stream HMM (MS2) training both streams
together using a multi-stream like the one in Fig. 2. Recognition
results (repeated holdout method) are depicted in Fig. 7. Error bars
indicate the range of accuracies from the maximum to the minimum
one in the repeated holdout method.
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Fig. 7. Isolated sign recognition results for Handshape-only,
Movement-only models and fusion using feature fusion (FF), syn-
chronous Multi-stream HMMs trained in two ways (MS1, MS2), and
Product HMM (PHMM). We also depict the maximum and the min-
imum performance from the repeated holdout method (in the form
of errorbars).

As we can see in Fig.7, feature fusion decreases recognition
accuracy related to movement-only models because movement and
handshape streams carry different kind of information and also
because we don’t use stream weights and both streams contribute
equally. For both MS1 and MS2 models, stream weights λm = 5,
λh = 3 were used and as expected the MS2 models outperformed
the MS1 because in MS1 models, the two single-streams HMMs
are trained asynchronously whereas Eq.(3) assumes that the HMM
streams are state synchronous. When using Product HMMs we
obtain the best performance increasing recognition accuracy 8,27%
over movement-only models, 18% over feature fusion, 4,49% over
MS1 and 1,47% over MS2. Our results show a modest but promising
increase which may be made more prominent by integrating more
different modalities. This objective is part of our current work in
continuous sign language recognition.

4. CONCLUSIONS

We have proposed the application of the so-called Product HMMs
for efficient multistream fusion for sign language recognition. We
have investigated alternative fusion schemes and we have demon-
strated superior performance of the proposed system. Product
HMMs allow for information stream asynchrony but at the same
time also account for possible interstream interactions. As opposed
to parallel HMMs, they do not consider the involved streams as
completely independent. We have reported experiments in sign clas-
sification and isolated sign recognition for the Greek Sign Language
with promising results. Currently we are working on extending this
approach for continuous sign language recognition.
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