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ABSTRACT

A fully affine invariant image comparison method, Affine-SIFT

(ASIFT) is introduced. While SIFT is fully invariant with re-

spect to only four parameters namely zoom, rotation and trans-

lation, the new method treats the two left over parameters : the

angles defining the camera axis orientation. Against any prog-

nosis, simulating all views depending on these two parameters

is feasible. The method permits to reliably identify features

that have undergone very large affine distortions measured by

a new parameter, the transition tilt. State-of-the-art methods

hardly exceed transition tilts of 2 (SIFT), 2.5 (Harris-Affine and

Hessian-Affine) and 10 (MSER). ASIFT can handle transition

tilts up 36 and higher (see Fig. 1).

Index Terms— image matching, affine invariance, scale

invariance, affine normalization, SIFT.

1. INTRODUCTION
Local image detectors used for image comparison can be clas-

sified by their incremental invariance properties. All of them

are translation invariant. The Harris point detector [3] is also

rotation invariant. The Harris-Laplace, Hessian-Laplace and

the DoG (Difference-of-Gaussian) region detectors [8, 10, 6, 2]

are invariant to rotations and changes of scale. Some moment-

based region detectors [5, 1] including the Harris-Affine and

Hessian-Affine region detectors [9, 10], an edge-based region

detector [17], an entropy-based region detector [4], and two

level line-based region detectors MSER (“maximally stable ex-

tremal region”) [7] and LLD (“level line descriptor”) [15] are

designed to be invariant to affine transformations. MSER, in

particular, has been demonstrated to have often better perfor-

mance than other affine invariant detectors, followed by Hessian-

Affine and Harris-Affine [12, 8, 10]. These methods proceed

by normalizing local patches, regions, or level lines that have

undergone an unknown affine transform. Normalization trans-

forms them into a standard object, where the effect of the affine

transform has been eliminated. However, when a strong change

of scale is present (in practice larger than 3), SIFT still beats

all other methods [6]. Indeed, as proved mathematically [14],

SIFT is fully scale invariant and, as pointed out in [6] none

of the normalization methods is fully scale or affine invariant:

“However, none of these approaches are yet fully affine invari-
ant, as they start with initial feature scales and locations se-
lected in a non-affine-invariant manner due to the prohibitive
cost of exploring the full affine space.”
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Fig. 1. Image pair with high transition tilt t ≈ 36. Bottom:

ASIFT finds 116 correct matches out of 120. SIFT, Harris-

Affine, Hessian-Affine, and MSER fail completely.

2. THE AFFINE CAMERA MODEL

Image distortions arising from viewpoint changes can be lo-
cally modeled by affine planar transforms, provided the ob-
ject’s boundaries are piecewise smooth [12]. Thus, the (local)
image deformation model under a camera motion is u(x, y) →
u(ax + by + e, cx + dy + f), where A =

[
a b
c d

]
is any lin-

ear planar map with positive determinant. Any such map has a

Fig. 2. Geometric interpretation of formula (1).

decomposition

A = λ

[
cosψ − sinψ
sinψ cosψ

] [
t 0
0 1

] [
cosφ − sinφ
sinφ cosφ

]
(1)

which we note A = λR(ψ)TtR(φ), where λ > 0, λt is the

determinant of A, φ ∈ [0, 180◦), R(ψ) denotes the planar rota-

tion with angle ψ, and Tt (t ≥ 1) is called the tilt. Fig. 2 shows

a camera motion interpretation of (1): φ and θ = arccos 1/t
are the camera viewpoint angles and ψ parameterizes the cam-

era spin. In this affine model the camera stands far away from

a planar object. Starting from a frontal position, a camera mo-

tion parallel to the object’s plane induces an image translation.

The plane containing the normal and the optical axis makes an
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angle φ with a fixed vertical plane. This angle is called longi-
tude. Its optical axis then makes a θ angle with the normal to

the image plane u. This parameter is called latitude. The tilt

t ≥ 1 is defined by t cos θ = 1. The camera can rotate around

its optical axis (rotation parameter ψ). Last but not least, the

camera can move forward or backward, as measured by the

zoom parameter λ. In short, (1) models the image deforma-

tion u(x, y) → u(A(x, y)) induced by a camera motion from

a frontal view λ0 = 1, t0 = 1, φ0 = ψ0 = 0 to an oblique view

characterized by λ, t, φ, and ψ.

3. HIGH TRANSITION TILTS

Equation (1) defines the absolute tilt, namely the image defor-

mation ratio when the camera passes from a frontal view to an

oblique view. But the compared images u1(x, y) = u(A(x, y))
and u2(x, y) = u(B(x, y)) are in general obtained from two
oblique camera positions.

Fig. 3. Difference between absolute tilt and transition tilt. Left:

longitudes φ = φ′, latitudes θ = 30◦, θ′ = 60◦, absolute tilts

t = 1/ cos θ = 2/
√

3, t′ = 1/ cos θ′ = 2, transition tilts

τ(u1, u2) = t′/t =
√

3. Right: φ = φ′ + 90◦, θ = 60◦,

θ′ = 75.3◦, t = 2, t′ = 4, τ(u1, u2) = t′t = 8.

Definition 1. Given two views of a planar image, u1(x, y) =
u(A(x, y)) and u2(x, y) = u(B(x, y)), we call transition tilt
τ(u1,u2) and transition rotation φ(u1,u2) the unique param-
eters such that BA−1 = HλR1(ψ)TτR2(φ), with the notation
of Formula (1).

Fig. 3 illustrates the affine transition between two images

taken from different viewpoints, and in particular the difference

between absolute tilt and transition tilt. With the two absolute
tilts t and t′ made in two orthogonal directions φ = φ′ + π/2,

one can verify that the transition tilt between u1 and u2 is the

product τ = tt′. Thus, two moderate absolute tilts can lead
to a large transition tilt! Since in realistic cases the tilt can go

up to 6 or even 8, it is easily understood that the transition tilt
can go up to 36, 64, and more. Fig. 1 shows the ASIFT re-

sults for an image pair under orthogonal viewpoints (transition

rotation φ = 90◦, absolute tilt t ≈ 6) that leads to a transi-

tion tilt τ ≈ 36. This is not at all an exceptional situation.

The relevance of the notion of transition tilt is corroborated by

the fact that the highest transition tilt τmax permitting to match

two images with absolute tilts t and t′ is fairly independent

from t and t′. It has been experimentally checked that SIFT

works up to τmax ≈ 2. The attainable transition tilts for Harris-

Affine and Hessian-Affine are close to 2.5. MSER is robust to

transition tilts τmax between 5 and 10. But this performance

is only verified when there is no substantial scale change be-

tween the images, and if the images contain highly contrasted

objects. ASIFT attains regularly transition tilts larger than 36,

and matches images beyond human performance (see Fig. 1).

4. THE ASIFT ALGORITHM

The idea of combining simulation and normalization is the main

successful ingredient of the SIFT method. Indeed, scale changes

amount to blur and cannot be normalized. Thus SIFT nor-

malizes rotations and translations, but simulates all zooms out.

David Pritchard’s extension of SIFT [16] simulated four addi-

tional tilts. This is actually a first step toward the algorithm

described below, which is also summarized in Fig. 4.

Fig. 4. Overview of ASIFT. Many pairs of rotated and tilted

images obtained from images A and B are compared by SIFT.

1. Each image is transformed by simulating all possible lin-

ear distortions caused by the change of orientation of

the camera axis. These distortions depend upon two pa-

rameters: the longitude φ and the latitude θ. The im-

ages undergo φ-rotations followed by tilts with parame-

ter t = | 1
cos θ |. For digital images, the tilt is performed

as a t-subsampling, and therefore requires the previous

application of an antialiasing filter in the direction of x,

namely the convolution by a Gaussian with standard de-

viation c
√

t2 − 1, where c = 0.8 [14].

2. These rotations and tilts are performed for a finite and

small number of latitudes and longitudes, the sampling

steps of these parameters ensuring that the simulated im-

ages keep close to any other possible view generated by

other values of φ and θ.

3. All simulated images are compared to each other by some

scale invariant, rotation invariant, and translation invari-

ant algorithm (typically SIFT). Since SIFT normalizes

the translation of the camera parallel to its focal plane

and the rotation of the camera around its optical axis, but

simulates the scale change, all six camera parameters are

either normalized or simulated by ASIFT.

4. The simulated latitudes θ correspond to tilts t = 1, a,

a2, . . . , an, with a > 1. Taking a =
√

2 is a good

compromise between accuracy and sparsity. The value n
can go up to 5 or more. That way, all transition tilts from

1 to 32 and more are explored.

5. The longitudes φ follow for each t an arithmetic series 0,

b/t, . . . , kb/t where b = 72◦ is a good compromise and

k is the last integer such that kb/t < 180◦.

6. Complexity: Each tilt is a t sub-sampling dividing the

image area by t. The number of rotated images for each

tilt is (180/72)t = 2.5t. Thus, the method complexity is
proportional to the number of tilts. Controlling the to-

tal area of the simulated images is equivalent to control-

ling the algorithm complexity. Indeed, the SIFT search
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time and memory size are proportional to the image area.

This complexity can be further downgraded by a) sub-

sampling the query and search images; b) identifying the

successful pairs (t, φ); c) going back to the original res-

olution only for these pairs.

7. This description ends with a concrete example of how the

multi-resolution search strategy can actually make the

algorithm only twice slower than SIFT. Take a =
√

2,

n = 5. The maximal absolute tilt for each image is 5.7
and the maximal transition tilt goes up to 32. The sim-

ulated image area is 5 × 2.5 = 12.5 times the original

area. By a 3 × 3-subsampling of the original, this area

is reduced to 1.4 times the one of the original image. If

this reduction is applied to both the query and the search

image, the overall comparison complexity is equivalent
to twice the SIFT complexity. Fig. 5 shows the relatively

sparse sampling of the longitude-latitude sphere needed

to perform a fully affine recognition.

A mathematical proof that ASIFT is fully affine invariant

(up to obvious precision issues) is given in [13].

Fig. 5. Sampling (block dots) of the parameters θ = arccos 1/t
and φ in a zenith view of the observation half sphere.

5. EXPERIMENTS AND RESULTS

ASIFT is compared with the four state-of-the-art algorithms

SIFT [6], Hessian-Affine, Harris-Affine [9, 10] and MSER [7]

detectors, all coded with the SIFT descriptor [6]. The images

used for the experiments are of size 600 × 450. 1

Testing absolute tilts
Fig. 6 shows the setting adopted for evaluating the maximum

absolute tilt and transition tilt attained by each algorithm. A

magazine and a poster were photographed for the experiments.

Unlike SIFT and ASIFT, the Hessian-Affine, Harris-Affine and

MSER detectors are not robust to scale changes. Thus, to focus

on tilts, the pairs of images under comparison were chosen free

of scale changes. The poster shown in Fig. 7 was photographed

with a reflex camera with viewpoint angles between the camera

axis and the normal to the poster varying from θ = 0◦ (frontal

view) to θ = 80◦. It seems physically unrealistic to insist on

larger latitudes. Table 1 compares ASIFT with the performance

of the other algorithms in terms of number of correct matches.

One of these matching results is illustrated in Fig. 7. For these

images SIFT works with angles smaller than 45◦. The perfor-

mance of Harris-Affine and Hessian-Affine plummets when the

1A website with an online demo is available.

http://www.cmap.polytechnique.fr/∼yu/research/ASIFT/demo.html.
It allows the users to test ASIFT with their own images. It also contains an

image dataset and more examples.

Fig. 6. Camera positions for systematic comparison.

angle goes from 45 to 65◦. Beyond this value, they fail com-

pletely. MSER struggles at the angle of 45◦ and fails at 65◦

degrees. ASIFT functions until 80◦.

θ/t SIFT HarAff HesAff MSER ASIFT

80◦/5.8 3 0 0 2 110

75◦/3.9 2 1 0 4 152

65◦/2.4 5 12 5 6 468

45◦/1.4 171 54 26 15 707

Table 1. Absolute tilt invariance comparison for viewpoint an-

gles between 45 and 80◦. The latitude angles and the absolute

tilts are listed in the left column.

Fig. 7. Correspondences between the poster at frontal view

and at 80◦ angle, absolute tilt t = 5.8. ASIFT (shown), SIFT,

Harris-Affine, Hessian-Affine and MSER (shown) find respec-

tively 110, 3, 0, 0 and 2 correct matches.

The above experiments and other many lead to the follow-

ing conclusion for maximal absolute tilts. SIFT hardly exceeds

a tmax = 2 absolute tilt. The limit is tmax ≈ 2.5 for Harris-

Affine and Hessian-Affine. The performance of MSER de-

pends heavily on the type of image. For images with highly

contrasted regions, MSER reaches an absolute tilt t ≈ 4. How-

ever, if the images do not contain highly contrasted regions or

if the scale change is larger than 3, the performance of MSER

decays strongly, even under small tilts. For ASIFT, an abso-

lute tilt of tmax ≈ 5.8 corresponding to the extreme viewpoint

angle of 80◦ is always attained.

Transition Tilt Tests
Fig. 8 shows SIFT, Harris-Affine and Harris-Affine failing on a

seemingly easy example. Indeed, the small absolute tilts t1 =
t2 = 2 combined with the longitude angles φ1 = 0◦ and φ2 =
50◦ yield a moderate transition tilt τ ≈ 3 that is out of reach

for these methods. ASIFT works perfectly. MSER works well

under these optimal conditions: highly contrasted images and

no scale change.
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Fig. 8. Correspondences between the magazine images taken

with absolute tilts t1 = t2 = 2 with longitude angles φ1 = 0◦

and φ2 = 50◦, transition tilt τ = 3. ASIFT (shown), SIFT

(shown), Harris-Affine, Hessian-Affine and MSER find respec-

tively 745, 3, 1, 3, 87 correct matches.

Table 2 compares the performance of the algorithms for a

set of magazine images that all have a t = 4 absolute tilt . The

maximal transition tilt is therefore 16. For these images, SIFT,

Harris-Affine and Hessian-Affine struggle with a 1.9 transition

tilt. They fail completely over this value. MSER works stably

up to a τ ≈ 7.7 transition tilt. Over this value, the number of

correspondences is too small for reliable recognition. ASIFT

works perfectly up to τ = 16. As shown in Fig. 1, ASIFT

actually attains transition tilts as large as 36.

Fig. 9 illustrates a round building. After a viewpoint change,

the left and right sides sustain big transition tilts. ASIFT finds

123 correspondences covering the graffiti on all the left, central

and right parts of the building. The other methods either fail or

find a small number of matches in the central part.

Fig. 9. Round building, transition tilt τ ∈ [1.8,∞). ASIFT

(shown), SIFT, Harris-Affine, Hessian-Affine and MSER

(shown) find 123, 19, 5, 7 and 13 correct matches.

6. CONCLUSION
Fig. 10 shows a last image pair with moderate transition tilts

where all methods fail except ASIFT. This is because normal-
ization methods, ideal in principle, do not deal in practice cor-

rectly with small shapes, large absolute tilts, and low contrast.

Simulation methods are by far more extensive. At first sight

prohibitive, they turn out to be feasible, thanks to the very

sparse sampling of the observation sphere shown in Fig. 5. The

robustness of the SIFT method to moderate transition tilts is

key to this sparse sampling.
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