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ABSTRACT 
 

Estimating rate functions underlying neural point processes is 
essential for characterizing the firing patterns of cortical neurons 
involved in sensory and motor processing. This paper introduces a 
new method for directly estimating neuronal firing rates from a 
compressed representation of their extracellular recordings. The 
approach is based on extending a near-optimal sparse 
representation of the extracellular recordings to time scales 
matching those of the underlying rate functions, thereby 
performing the same role as a kernel-density estimator but at a 
much lower computational cost. Experimental results demonstrate 
that this method achieves comparable performance to the 
conventional Gaussian kernel estimation methods at a fraction of 
the computational cost. This makes it suitable to Brain Machine 
Interface applications where real time decoding of neural activity 
for neuro-motor prosthetic control using firing rate estimates is 
strongly desired. 

Index Terms— Brain machine interface, compressed sensing, 
spike train, spike sorting, firing rate.
 

1. INTRODUCTION 

Decoding information in neuronal spike trains is a fundamental 
goal in systems neuroscience in order to better understand the 
complex mechanisms underlying brain function. In motor systems, 
these spike trains were demonstrated to carry important 
information about movement intention and execution of paralyzed 
subjects [1], and were shown to be useful in the development of 
neuro-motor prosthetic control of artificial limbs [2]. 

Cortically-controlled brain machine interface (BMI) systems 
rely fundamentally on instantaneous decoding of spike trains from 
motor cortical neurons. This decoding process is typically a 
cascade of processing steps illustrated in the top row of Fig.1. 
After preprocessing neural recordings through amplification, noise 
filtering and analog to digital conversion, spike detection and 
sorting followed by rate estimation is implemented to estimate the 
firing rate of individual neurons prior to decoding. The recorded 
data typically demands an ultra high bandwidth to permit the spike 
detection and sorting steps to take place with massive 
computational power [3]. Data compression is highly desired for 
these systems to be fully implantable and feature wireless 
communication with the outside world without compromising 
critical information needed for rate estimation downstream.  

Estimating the firing rates from the set of event times post 
spike sorting is typically achieved by binning the data into time 
bins of equal width, and counting the number of events occurring 
within each bin. The resulting spike counts, often referred to as a 
rate histogram, constitute an instantaneous firing rate estimate. 

This is equivalent to convolving the spike train with a fixed-width 
rectangular window. This approach assumes that variations in the 
rate pattern over the bin width do not carry information. 
Alternatively, the firing rate can be also estimated by filtering the 
spike trains using a variable-width kernel function (e.g. a 
Gaussian) to yield smoothed estimations of the firing rates [4], 
where the temporal support of the kernel function is known to 
strongly impact the rate estimator [5]. 

In this paper, we show that a sparse representation of the neural 
signals, previously shown to yield substantial denoising and 
compression properties [6] enables adequate estimation of neuronal 
firing rates without the need to decompress, reconstruct and sort 
the spikes in the traditional sense. This is illustrated in the bottom 
half of Fig.1, where rate estimation and decoding of neural 
discharge patterns can be directly performed using the compressed 
data.

Fig.1. Schematic diagram of a typical data flow in a Brain 
Machine Interface application.  

2. THEORY 

In a typical neural recording experiment, the observations of 
interest are the times of events from a population of neurons. The 
set of event times that expresses the discharge pattern of an 
arbitrary neuron p can be modeled as a realization of an underlying 
point process with conditional intensity function -or firing rate- 

p(t|F). This intensity function is conditioned on some set, F, of 
intrinsic properties of the neuron itself and the neurons connected 
to it, and some extrinsic properties such as the neuron’s tuning 
characteristics to external stimuli features [7]. Spike trains from 
motor cortex neurons can be modeled as a variant of the cosine 
tuning model of the neuron’s preferred direction, p, [8] as 
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where p denotes the background firing rate, (tk)  denotes the 
actual movement direction, and xp = [ p, p, p] is a parameter 
vector governing the tuning characteristics of the modeled neuron. 
These are the tuning depth, p, the preferred direction, p, and the 
tuning width, p. Event times can be modeled using (1) as the 
intensity function of an inhomogeneous Poisson process. The 
tuning term incorporates a neuron-dependent tuning width term, 

p, an important parameter that affects the bin width choice for rate 
estimation. Variability in this term results in firing rates that are 
more stochastic in nature [9].  

2.1. Sparse Representation of Spike Recordings 

For compression purposes, it was shown in [5] that a carefully-
chosen sparse transformation operator, such as a wavelet 
transform, can significantly reduce the number of coefficients 
representing each spike waveform recorded. The basis should be 
selected to keep the smallest number of coefficients without 
significant loss of spike features. To minimize the number of most 
important coefficients per spike event, ideally to a single feature, 
we note that the magnitude of the coefficients carry information 
related to the degree of correlation of the spike waveforms to the 
chosen basis [10]. Therefore, this information can be used to single 
out “the most significant” coefficient via a thresholding process. 
This sensing threshold is selected to preserve the ability to 
discriminate neuron p’s events (alternative hypothesis) from those 
belonging to other neurons (null hypothesis) in a given node 
without necessarily minimizing a spike reconstruction error in a 
classical mean square error sense. This can be cast as a binary 
hypothesis testing problem in which 
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where p
j is the sensing threshold of neuron p at time scale j and 

gj=<gp, wj> is the convolution with the wavelet basis, wj.
Fig.2 shows the wavelet decomposition tree for a set of five 

neurons recorded in vivo. Node 0 is the separation obtained in the 
time domain displayed in a 2-D feature space obtained from 
projecting spike events onto the largest eigenvectors. For Nodes 4 
and 6, a sensing threshold can isolate units 4 and 1 respectively, 
while such a threshold is relatively harder to identify for Node 2. 
This is equivalent to a linear decision boundary of a 2-class 
problem. To detect the remaining classes, each detected class at a 
given node is first removed, then the decomposition proceeds to 
the next level and the 2-class binary decision process repeats until 
all nodes have been processed. 

2.2. Instantaneous Rate Estimation 

The sparse representation obtained post thresholding provides a 
binary spike train of neuron p that can be expressed as 
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where (.) is the Dirac delta function and gp denotes a spike 
waveform generated by neuron p, where the length of each spike is 
Ns samples and {tp}is the set of event times. The compressed and 
thresholded representation can be expressed as 
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Fig.2. Top: Events from five recorded neurons aligned and 
superimposed on top of each other, and the corresponding spike 
templates obtained by averaging events from each neuron on the 
left column. Bottom: Wavelet decomposition tree showing the unit 
isolation quality, displayed in the 2-D feature space in every node. 
Verification of the algorithm is achieved by matching the gold 
cluster isolated by the sensing thresholds to a single colored cluster 
on the right side, which represent the remaining units. 

A fundamental property of the sparse representation of the 
discrete wavelet transform suggests that as the level of 
decomposition increases, the wavelet coefficients become more 
representative of the intensity function rather than the temporal 
details of the spikes themselves. Mathematically, extending the 
wavelet decomposition to higher level is equivalent to convolving 
it with a wavelet kernel with increasing support. The temporal 
support, tL, of the basis at level L is related to the sampling period, 
Ts, by 
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where nw is the wavelet kernel support. For the symmlet4 basis 
used in this paper nw = 8. Temporal characteristics of firing rate 
will be best characterized starting at level 6 and beyond where the 
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basis support becomes long enough to include two or more 
consecutive spike events. 

3. RESULTS

We used the rate estimation error in addition to the decoding 
performance as measures of success of the proposed method. A 
sample 2D arm trajectory, rate functions from two sample neurons 
with broad and sharp tuning widths, and their spike train 
realizations are shown in Fig.3a. Fig.3b illustrates the tuning 
characteristics of a subpopulation of 12 neurons used for encoding 
the 2D arm trajectory to demonstrate the heterogeneous 
characteristics of the model (1). A 9-second raster plot in Fig.3c 
illustrates the stochastic patterns obtained from the inhomogeneous 
Poisson model.  

In Fig.4a, a 400 ms segment of the movement’s angular 
direction over time is illustrated superimposed on the neuronal 
tuning range of five representative units with distinct tuning 
widths. The resulting firing rates and their estimators using the rate 
histogram (rectangular kernel), Gaussian kernel, and proposed 
DWT methods are illustrated for the five units, showing various 
degrees of estimation quality. As expected, the rate histogram 
estimate is noisy, while the Gaussian and Extended Discrete 
Wavelet Transform (EDWT) method perform better as indicated 
by a lower Mean Square Error (MSE) 

(a) 

(b)

(c) 
Fig.3. (a) Schematic of encoding 2D, non goal-directed arm 
movement. All neurons in the model were interconnected through 
random excitatory or inhibitory connections. (b) Tuning 
characteristics of a subset of the 12 neurons modeled with 
randomly chosen directions and widths. (c) Sample 9-second raster 
plot of spike trains from the population model. 

(a) 

(b)
Fig.4. (a) Top-left: 400 ms segment of angular direction of the 
movement trajectory superimposed on tuning characteristics of five 
representative units. The remaining figures represent the firing rate 
estimation for sharp and broad tuned neurons. (b) Mean square 
error between the actual and the estimated firing rate for each 
neuron with three firing rate estimation methods.  

In Fig.4b, the relation between the wavelet kernel size and the 
MSE is quantified. As expected, decomposition levels with shorter 
kernel width (i.e., fine time scales) tend to provide the lowest MSE 
for neurons that are sharply tuned (10-levels). In contrast, a global 
minimum in the MSE is observed for broadly tuned neurons at 
coarser time scales, suggesting that these decomposition levels are 
better for capturing the time varying-characteristics of the firing 
rates (12-levels). Interestingly, the MSE for the EDWT method 
attains a lower level than both the rectangular and Gaussian kernel 
methods at the optimal time scale, clearly demonstrating the 
superiority of the proposed approach. Consequently, as the tuning 
broadens, larger kernel sizes (i.e. deeper decomposition levels) are 
required to attain a minimum MSE and thus better performance. 

3.3. Decoding Performance 

A sample trajectory and the decoded trajectory are shown in 
Fig.5 for four different cases: First, when no spike sorting is 
required. This is the ideal case in which every electrode records 
exactly the activity of one neuron, but is hard to encounter in 
practice. Second, when two or more units are recorded on a single 
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electrode but no spike sorting is performed prior to rate estimation. 
Third, when spike sorting is performed for the later case using a 
traditional Principal Component Analysis (PCA) and Expectation 
Maximization (EM) clustering framework for spike sorting and the 
Gaussian kernel for rate estimation. And fourth, when combined 
spike sorting and rate estimation are performed using the proposed 
method. We used a linear filter for decoding in all cases. It is clear 
that the proposed method has a decoding error variance that is 
comparable to the third case, suggesting that the performance is as 
good as the standard method. 

Fig.5. Decoding performance of a sample 2D movement trajectory. 
The black line is the average over 20 trials, while the gray shade 
represents the trajectory estimate variance. Top left: one neuron is 
recorded on any given electrode. The variance observed is due to 
the network term. Top right: every electrode records two neurons 
on average and no spike sorting is performed. Bottom left: standard 
spike sorting and rate estimation is implemented. Bottom right:
Proposed method. 

Comparing the cost of firing rate estimation through the 
standard time domain spike sorting/kernel smoothing approach and 
the compressed sensing approach shows substantial savings in 
computational costs for implantable neural prosthetic systems 
(Fig.6). This is mainly because the full reconstruction of the spike 
trains in the proposed approach is not necessary. On the other 
hand, the computational complexity of the PCA/EM/Gaussian 
kernel is attributed to the complexity in computing the 
eigenvectors of the spike data every time a new neuron is recorded, 
while in contrast, wavelets are universal, signal-independent 
approximators.

4. CONCLUSION

We have proposed a new approach to directly estimate 
instantaneous firing rates of cortical neurons from their 
compressed extracellular spike recordings. The approach is based 
on a sparse representation of the data and eliminates multiple 
blocks from the signal processing path in BMI systems. We 
showed that firing rates are estimated across a multitude of 
timescales, an essential feature to cope with the heterogeneous 
tuning characteristics of motor cortex neurons. We used the 
decoding of simulated 2D arm trajectories to demonstrate the 
quality of decoding obtained using this approach. The approach 
was compared to other methods classically used to estimate firing 

rates through a more complex processing path, and we 
demonstrated the improved performance attained with our 
approach. 

Fig.6. Computational complexity of the PCA/EM/Gaussian kernel 
and the proposed method: Computations per event displayed as a 
function of the number of events and number of samples per event. 
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