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ABSTRACT

In this paper, we propose a distributed solution to the prob-

lem of configuring classifier trees in distributed stream min-

ing systems. The configuration involves selecting appropriate

false-alarm detection tradeoffs for each classifier to minimize

end-to-end penalty in terms of misclassification cost. In the

proposed solution, individual classifiers select their operat-

ing points (i.e., actions) to maximize a local utility function.

The utility may be purely local to the current classifier, cor-

responding to a myopic strategy, or may include the impact

of the classifier actions on successive classifiers in the tree,

corresponding to a foresighted strategy. We analytically show

that actions determined by the foresighted strategies can im-

prove the end-to-end performance of the classifier tree and

derive an associated probability bound. We then evaluate our

solutions on an application for hierarchical sports scene clas-

sification. By comparing centralized, myopic and foresighted

solutions, we show that foresighted strategies result in better

performance than myopic strategies, and also asymptotically

approach the centralized optimal solution.

Index Terms— Resource constrained stream mining,

coalition-based foresighted strategy, binary classifier tree.

1. INTRODUCTION

Emerging applications, such as online photo and video

streaming services, financial analysis, real-time manufac-

turing process control, search engines, spam filters, security,

and medical services [1, 2] require processing and classifica-

tion of continuous, high volume data streams. Scaling and

resource considerations lead to such applications being devel-

oped as processing topologies of distributed operators [3, 4]

deployed on large-scale stream mining systems [4,5]. Several

of these stream mining applications implement topologies

(ensembles such as trees or cascades) of low-complexity bi-

nary classifiers to hierarchically filter the data streams and

jointly accomplish the task of complex classification [2, 6].

A key challenge for such applications involves manage-

ment of individual classifiers to maximize end-to-end perfor-

mance – especially under dynamically varying and distributed

resource constraints and data characteristics. In this paper, we

focus on the classifier configuration problem for binary tree

topologies, i.e., determining the optimal operating point (de-

tection - false alarm tradeoff) for each classifier in the tree, in

order to maximize the end-to-end classification performance.

Previously, this problem has been modeled as as an optimiza-

tion problem and centralized techniques such as Sequential

Quadratic Programming (SQP) [7] have been used to solve

it. However, a centralized solution suffers disadvantages in

terms of having a single central point of control and associ-

ated failure, issues with scaling and adaptation as the topology

grows, and not allowing large scale applications with capabil-

ities distributed across multiple proprietary entities.

In this paper, we propose a distributed solution, where

each classifier decides its optimal action – selecting an op-

erating point – in order to maximize a local utility function.

Different optimal actions may be determined based on the

availability of information about other classifiers. If only lo-

cal information is available, the optimal action is myopically
selected to maximize the classifier’s own utility [8]. How-

ever, if a classifier has additional information about its suc-

cessive classifiers, it can form a coalition with them and de-

termine a foresighted action to maximize a coalition utility.

We analytically show that foresighted actions improve the

end-to-end performance of the classifier tree and derive an

associated probability bound. Simulation results show that

foresighted actions result in better performance than myopic

actions. Moreover, we show that the foresighted actions ap-

proach the centralized optimal solution, as the coalition size

and the number of actions increase.

This paper is organized as follows. In Section 2, we intro-

duce our model for individual classifiers and classifier trees.

In Section 3, we propose coalition-based foresighted strate-

gies for classifier tree configuration. We present simulation

results in Section 4, and conclude in Section 5.

2. DISTRIBUTED BINARY CLASSIFIER TREES

Consider a stream mining application [7], which consists of

several binary classifiers in a tree topology depicted in Fig. 1.

The topology of classifiers in this example is used to identify

semantic concepts from sports image data using hierarchical

filtering. Leaf classifiers (e.g. classifier 4, 8 etc.) represent the

actual class of interest, while intermediate classifiers assist in

hierarchical filtering of data based on a semantic hierarchy of

concepts. The following descriptions can also be found in [8].

· Configuration of Binary Classifier: A binary classifier
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Fig. 1. An illustrative classifier topology.

filters input data into the “yes” class and the “no” class. We

model each classifier Ci with two classification units (CUs),

i.e., Ci = {ci, c̄i}, corresponding to the “yes” and “no” out-

puts respectively (Fig. 1). We use notation i � k to denote

that ci (or c̄i) is a preceding CU for ck (or c̄k), or ck (or c̄k)

is successive CU for ci (or c̄i). The topology allows disam-

biguation between the two CUs per classifier.

· Stream Characteristics: The input stream for classifier

Ci is characterized by throughput ti and goodput gi, which

represent total data rate and correctly labeled data rate, re-

spectively. The true fraction of positive stream data for CU ci

is denoted by φi and is pre-determined, based on the classifier

topology and data characteristics. For c̄i, φ̄i = 1 − φi.

· Performance of CU: As in [7], performance of ci (c̄i) is

controlled by its tradeoff between probability of false alarm

pF
i (p̄F

i ) and probability of detection pD
i (p̄D

i ). The two CUs

may have decoupled operating points, e.g. through the use of

independent thresholds (one for “yes” and one for “no”) for

score based classifiers. The set of operating points (pF
i , pD

i )
represent the quantized DET curve1 – a non-decreasing con-

cave function. We define an action set Ai, with action ai ∈
Ai representing the selection of operating point (pF

i , pD
i ) (see

Fig. 1). We can similarly define action set Āi for CU c̄i.

· Misclassification Cost: Cost coefficients λF
i (λ̄F

i ) and

λM
i (λ̄M

i ) represent the cost/penalty per unit data rate of false
alarm and miss for CU ci (c̄i). These coefficients are spec-

ified by the application for leaf classifiers – and may be de-

rived for other classifiers based on the topology. λF
i and λM

i

for intermediate CU ci may be derived from its immediately

successive classifier Ck as λF
i = φkλF

k + φ̄kλ̄F
k and λM

i =
φkλM

k + φ̄kλ̄M
k .

· Input and Output Rates: For ci and c̄i, the output stream

rates (t′i, g′i) and (t̄′i, ḡ′i) may be derived as [7]:[
t′i
g′i

]
= Ti

[
ti
gi

]
, and

[
t̄′i
ḡ′i

]
= T̄i

[
ti
gi

]
, (1)

where Ti and T̄i are given by

1It can be referred to as Receiver Operating Characteristic (ROC) curve.

Ti =
[

pF
i φi(pD

i − pF
i )

0 φip
D
i

]
, and T̄i =

[
p̄D

i φi(p̄F
i − p̄D

i )
0 φ̄ip̄

D
i ,

]
.

· Local Utility Function: For CU ci, the incurred cost due

to misclassification is defined as (t′i − g′i)λ
F
i +(Λi − g′i) λM

i .

Λi represents a true fraction of stream data that belongs to

ci for input stream rate tr to the tree and is defined as Λi =
trφi ·

∏
∀k∈{j|j�i} φ̂k, with φ̂k = φk for ck and φ̂k = φ̄k

for c̄k. We assume that Λi is known to ci. The utility is then

defined as the negative cost, or

Ui = − [
(t′i − g′i)λ

F
i + (Λi − g′i) λM

i

]
. (2)

Similarly, we can define Ūl for c̄l in terms of λ̄F
l and λ̄M

l .
The end-to-end utility US may thus be expressed as

US =
∑

cl∈CL

Ul +
∑

c̄l∈CL

Ūl, (3)

where CL denotes a set of leaf CUs.

3. COALITION-BASED FORESIGHTED
STRATEGIES FOR CLASSIFIER TREES

In this section, we study the impact of coalition formation

and foresighted actions on the end-to-end application perfor-

mance.

3.1. Available Information for CUs
The local information Ii required for CU ci to define its utility

in (2) is Ii = {ti, gi, φi, λ
F
i , λM

i ,Ai, Λi}. Additionally, ci

can also get information I−i about its successive classifiers.

We have:
I−i = {Îk|i � k}, (4)

where Îk = Ik for ck and Îk = Īk for c̄k. Note that I−i does

not include Ii. Ī−i for c̄i can be similarly defined. Informa-

tion I−i enables ci to have a foresighted strategy.

3.2. Foresighted Strategy πi of CU ci

A strategy for CU ci is to select an action that maximizes its

utility. If ci has information I−i in addition to its local in-

formation Ii, it can select its action that maximizes the utility

for the coalition. A coalition Gi of ci is defined as the set

of successive classifiers for which information is available to

ci. Such action selection strategy is referred to as foresighted.

Specifically, the foresighted strategy of ci with information

Ii = {Ii, I−i} is denoted by πi(Ii) and a foresighted action

is selected as

a∗
i = πi(Ii) = arg max

ai∈Ai

UGi
(ai, (ak, āk)Ck∈Gi

) , (5)

where UGi
denotes the utility achieved by Gi, i.e., the sum of

utilities derived by ci’s successive CUs with the largest dis-

tances in each branch. For example, in Fig. 2 (b), UGf
=

Ûf + ˆ̄Uf . As a special case, if Ii = {Ii} (i.e., only local

information is available), the strategy in (5) becomes myopic,

since ci selects its actions that maximize its own utility.
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Note that UGi
depends on the action ai of ci as well

as the actions of coalition members (i.e., (ak, āk)Ck∈Gi
).

However, ci decides its action ai independently, based on the

assumption that (ak, āk)Ck∈Gi
are myopically determined.

This keeps the foresighted solution completely distributed

and allows the action ai to be uniquely determined. However,

compare to the myopic strategy, the computational com-

plexity for the foresighted strategy increases. Note that a

foresighted action of a CU only indirectly controls the action

selections of successive classifiers.

3.3. Coalition and End-to-End Performance Improve-
ment

In this section, we analytically show that a foresighted strat-

egy can improve the end-to-end performance. In the follow-

ing analysis, we consider an elementary sub-tree shown in

Fig. 2. In this example, the end-to-end utilities of this tree are

determined by Um + Ūm (a) and Uf + Ūf (b). In Fig. 2(a),

cm determines its action based on a myopic strategy, while in

Fig. 2(b), cf decides its action based on a foresighted strategy

for its coalition Gf = {cf , Ci} = {cf , ci, c̄i}.

A foresighted action by cf guarantees that the coalition

utility Ûf + ˆ̄Uf ≥ Ûm + ˆ̄Um, because the myopic strategy is a

special case of the foresighted strategy. This may be decom-

posed as

Ûf − Ûm ≥ Δû, and ˆ̄Uf − ˆ̄Um ≥ −Δˆ̄u, (6)

where Δû − Δˆ̄u ≥ 0 for Δû ≥ 0. Based on the input-

output relationship given in (1), the conditions in (6) can be

expressed as

Δt/Δg ≤ (λF
i + λM

i )/λF
i − Δû/(λF

i Δg) � RA, (7)

Δt̄/Δḡ ≤ (λ̄F
i + λ̄M

i )/λ̄F
i + Δˆ̄u/(λ̄F

i Δḡ) � RB , (8)

where Δt � tf − tm, Δg � gf − gm, Δt̄ � t̄f − t̄m, and

Δḡ � ḡf − ḡm. Without loss of generality2, we assume that

Δg > 0 and Δḡ > 0.

2For Δg < 0 (or Δḡ < 0), it only switches between RC and RA (or RD

and RB) in (13), and thus, it does not affect the corresponding conclusions.

Now, we derive conditions on when the foresighted strat-

egy of cf leads to better end-to-end utility, i.e., when we have

Uf + Ūf > Um + Ūm. Consider the contradictory case, i.e.,

we have Um + Ūm ≥ Uf + Ūf . For this to happen, we have:

Um − Uf ≥ Δu, and Ūm − Ūf ≥ −Δu. (9)

Using (1) and the fact that action y∗
j (or ŷj) instead of x∗

j (or

x̂j) incurs higher costs for cj (or c̄j) in Fig. 2, conditions in (9)

can be expressed as

Δt/Δg ≥ QN
j /QD

j + Δu/(ΔgQD
j ) � RC , (10)

Δt̄/Δḡ ≥ QN
k /QD

k − Δu/(ΔḡQD
k ) � RD, (11)

where QN
h = y∗

hφhλF
h + fh(y∗

h)φhλM
h + f̄h(ŷh)(λ̄F

h + (1 −
φh)λ̄M

h ) − φhŷhλ̄F
h and QD

h = y∗
hλF

h + f̄h(ŷh)λ̄F
h for h =

{j, k}. Based on this, we can conclude that

Um + Ūm ≥ Uf + Ūf ⇒
RC ≤ Δt/Δg ≤ RA, and RD ≤ Δt̄/Δḡ ≤ RB . (12)

This finally leads to a lower bound for the probability that

Um + Ūm < Uf + Ūf , i.e.,

Pr(Um + Ūm < Uf + Ūf ) ≥

1 − Pr(RC ≤ Δt

Δg
≤ RA) · Pr(RD ≤ Δt̄

Δḡ
≤ RB). (13)

In general, as the difference in coalition utility achieved by the

foresighted and myopic strategies increases, i.e., Δû becomes

large or Δˆ̄u becomes small (thus, RA or RB have smaller

values), the lower bound for Pr(Um + Ūm < Uf + Ūf ) in-

creases. Hence, if a foresighted strategy leads to significant

improvements in local coalition utility, it is also more likely

to increase the end-to-end utility.

4. SIMULATION RESULTS

4.1. Simulation Set-up

We consider the semantic concept detection application [7]

shown in Fig. 1. Each classifier operates on low level im-

age features such as color histograms, color correlograms,

etc. using a Support Vector Machine, and classifiers are or-

ganized into a semantic hierarchy of concepts. We compare

the performance of myopic and foresighted strategies against

a centralized approach [7].

4.2. Impact of Action Set Size and Foresighted Strategy

To highlight the impact of the number of available actions and

the foresighted strategies on the end-to-end application cost,

we consider an elementary sub-tree of our application, con-

sisting of classifiers 1, 2, and 3 in Fig. 1. We set λF
l (λ̄F

l ) =
λM

l (λ̄M
l ) = 1, for l = 2, 3, and derive λF

1 (λ̄F
1 ) and λM

1 (λ̄M
1 )

appropriately. We set the input stream rate tr = 1. The re-

sulting misclassification costs for different number of actions
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(Ai = 20, 40, 80, 160 for i = 1, 2, 3) and different degrees of

foresightedness are shown in Fig. 3.

Fig. 3 clearly shows that increasing the number of avail-

able actions leads to a lower application cost – approaching

the performance of the best result for the centralized algo-

rithm. Moreover, this result shows that foresighted strate-

gies always outperform myopic strategies. This is because

any action part of the myopic strategy is always included in

the candidate actions for the foresighted strategies. This re-

sult also shows that increasing the coalition size can result

in a lower end-to-end application cost. Specifically, coali-

tion {C1, C2, C3} achieves much lower cost than coalitions

{c1, C2} and {c̄1, C3}, both of which outperform the my-

opic strategy. We also observe that the achieved utilities from

the same size coalitions, {c1, C2} and {c̄1, C3}, are different.

This is because the derived utilities depend on not only the

foresighted actions (a∗
1 and ā∗

1) but also their DET curves and

φ̂l, l = 2, 3. Hence, forming coalition with CUs having better

DET performance or higher φ̂l can result in higher coalition

utility.

4.3. End-to-End Application Performance
In this simulation, we assume that each CU has 80 available

actions, and we set λF
l (λ̄F

l ) = λM
l (λ̄M

l ) = 1 for leaf CUs

cl ∈ CL. We consider three different foresighted strategies

{c1, C2}, {c̄1, C3}, and {C1, C2, C3}, as in section 4.2. We

compare against the centralized solution in [7]. Since SQP

is gradient descent based, we use 500 different randomized

starting points, and provide the minimum (Best) as well as the

average cost (Average). The resulting end-to-end application

costs are shown in Table 1.

It is clear that the proposed distributed approaches always

outperform the average performance of the centralized ap-

proach. This is reflected in the percentages in the table, com-

puted as (Cost − Costcent
avg )/(Costcent

best − Costcent
avg )×100%.

As discussed in Section 3.3 and Section 4.2, enlarging a coali-

tion size results in improved application performance. In the

illustrative coalitions, while foresighted strategies for coali-

tions {c1, C2} or {c̄1, C3} achieve approximately 70% of

centralized best solution, foresighted decisions for coalition

Table 1. Achieved End-to-End Application Costs (80 actions)

Experiment Cases End-to-End Application Cost

Centralized (Average) 0.5874 (0 %)

Myopic 0.5361 (68.5 %)

Foresighted (c1, C2) 0.5348 (70.2 %)

Foresighted (c̄1, C3) 0.5345 (70.6 %)

Foresighted (C1, C2, C3) 0.5331 (72.5 %)

Centralized (Best) 0.5125 (100 %)

{C1, C2, C3} achieve 72.5% of centralized best solution.

5. CONCLUSIONS

In this paper, we propose a distributed solution to the con-

figuration of classifier tree topologies in distributed stream

mining system. Individual classifiers select actions (i.e., de-

termine operating points) in a distributed way, based on my-

opic or foresighted strategies, depending on the available in-

formation. We show analytically that the foresighted strate-

gies that maximize (local) coalition utilities can eventually

improve the end-to-end application utility. Our simulation re-

sults, performed on a semantic concept detection application

for sports image analysis, show that deploying foresighted

strategies improve performance of the classifier tree applica-

tion. Moreover, the performance incrementally improves as

the coalition size increases. We also show that the proposed

distributed approaches performance improves with the num-

ber of actions available to each classifier – asymptotically ap-

proaching the best performance of a centralized approach.
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