REGULAR SIMPLEX CRITERION: A NOVEL FEATURE EXTRACTION CRITERION
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ABSTRACT

Feature extraction is an important topic in machine learning. There
are two representative criterions for feature extraction, i.e. Fisher
Criterion and Maximum Margin Criterion. In this paper, we pro-
pose a new criterion, called Regular Simplex Criterion. This crite-
rion requires that samples from the same class are projected to the
same point, while samples from different classes have unit distance.
Under this criterion, we present a novel dimensionality reduction
method, namely Linear Simplex Analysis (LSA). LSA is solved by
multivariate linear regression with a specific definition of class indi-
cator matrix which has a strong geometrical interpretation, i.e. each
column of this matrix corresponds to a vertex of a regular simplex.
Several variants of LSA, e.g. Regularized Simplex Analysis (RSA)
and Kernel Simplex Analysis (KSA), are also proposed. Encourag-
ing experimental results on UCI machine learning database indicate
that the new criterion as well as the proposed methods are very ef-
fective.

Index Terms— Regular Simplex Criterion, Feature Extraction

1. INTRODUCTION

High-dimensional data in the input space is usually not good in prac-
tical application due to the curse of dimensionality. A common way
that attempts to resolve this problem is to use dimensionality reduc-
tion, which is an important topic in machine learning. Dimension-
ality reduction techniques include two types: (1) feature selection:
to select a subset of most representative features from the original
feature set, and (2) feature extraction: to transform the original fea-
ture space to a smaller feature space. Compared with feature selec-
tion, feature extraction can not only reduce the dimensionality of the
feature space, but also exploit the intrinsic subspace of the original
feature space. Feature extraction can be categorized into two types:

1. Unsupervised feature extraction: the most popular unsuper-
vised feature extraction method is Principal Component Analysis
(PCA). It aims to find a subspace in which the variance of the
projected data is maximum. Since unsupervised feature extraction
methods do not take into account the class information, the features
extracted is not very suitable for classification.

2. Supervised feature extraction: there are two representative
criterions for supervised feature extraction, i.e. Fisher Criterion [1]
and Maximum Margin Criterion [2]. Linear Discriminant Analy-
sis (LDA) [1] is based on Fisher Criterion which aims to maximize
the between class variance and minimize the within class variance.
Maximum Margin Criterion [2] aims to find a subspace in which a
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sample is close to those in the same class but far from those in dif-
ferent classes.

In this paper, we propose a new criterion for supervised fea-
ture extraction, called Regular Simplex Criterion. This criterion re-
quires that samples from the same class are projected to the same
point, while samples from different classes have unit distance. Under
this criterion, we present a novel dimensionality reduction method,
namely Linear Simplex Analysis (LSA). LSA is solved by multivari-
ate linear regression with a specific definition of class indicator ma-
trix which has a strong geometrical interpretation, i.e. each column
of this matrix corresponds to a vertex of a ¢ regular simplex, where
c is the number of classes. Several variants of LSA, e.g. Regular-
ized Simplex Analysis (RSA) and Kernel Simplex Analysis (KSA),
are also proposed. Encouraging experimental results on UCI ma-
chine learning database indicate that the new criterion as well as the
proposed methods are very effective.

The remainder of this paper is organized as follows. In Section
2, we will review some criterions closely related to ours. In Section
3, we will propose linear simplex analysis. In Section 4, regularized
simplex analysis is presented, and in Section 5, kernel simplex analy-
sis is proposed. The experiments on UCI machine learning database
are demonstrated in Section 6. Finally, we draw a conclusion in Sec-
tion 7.

2. RELATED WORK

In this section, we will briefly review Fisher Criterion and MMC
Criterion mostly related with ours.

Let {(x1,¥1), (x2,Y2), ..., (Xn, yn)} be the data set, where x;
is a d dimensional column vector, and y; is the label of x;. £ =
{1,2,...,c} is the label set. LDA [1] aims to find a projection ma-
trix W € R?¥™ by the Fisher Criterion

max tr((W''S, W)™ (WT'S,W)), M

where Sy = 3°¢_ | ni(m; —m)(m; —m)7 is called between-class
scatter matrix, m; and n; are mean vector and size of class ¢ respec-
tively, m = >_%_, nymy is the overall mean vector, S,y = > 5, S;
is the with-in class scatter matrix, S; is the covariance matrix of class
i.When the size of samples is small, S,, is singular and Eq.(1) cannot
be solved stably. To address this problem, Regularized Discriminant

Analysis (RDA) [3] was proposed
max tr((W” (S, + ADW) H (WS, W)), )

where A is a small positive regularizer and I is identity matrix of
proper size.
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Maximum Margin Criterion [2] aims to find a projection matrix
W € R¥™ by

max tr(WT(Sb — Suw)W), 3)

where tr(-) denotes the matrix trace and W7 W = I. It requires
a sample is close to those in the same class but far from those in
different classes [2].

3. REGULAR SIMPLEX ANALYSIS

In this paper, we propose a new criterion for supervised feature ex-
traction. This criterion is

1. Samples from the same class are projected to the same point,
that is, the with-class distance is zero;

2. Samples from different classes have unit distance.

This criterion can be mathematically formulated as

(e

i —%5)l|2 =0,

ify; =y;
)
i —x5)|[2 =1,

if y: # y;.

The above equation is usually over determined. The intuition is,
although obtaining the ideal projection matrix W is infeasible, we
can define an ideal subspace, then we can find a projection matrix
which results a subspace aligning to the ideal subspace as close as
possible. It is easy to figure out that, when there are two classes,
ie. ¢ = 2, the ideal subspace is a line segment with unit length.
When ¢ = 3, the ideal subspace is a regular triangle with unit edge
length. And when ¢ = 4, the ideal subspace is a regular tetrahedron
with unit edge length. However, when ¢ > 5, it is really difficult to
imagine. In fact, the ideal subspace is a regular simplex [4]. We will
introduce the regular simplex in the following.

3.1. Regular Simplex

In geometry, a simplex or m-simplex is an m-dimensional analogue
of a triangle. Specifically, a m-simplex is the convex hull of a set
of m + 1 affinely independent points in Euclidean space of dimen-
sion m. For example, a 0-simplex is a point, a 1-simplex is a line
segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron.

A regular simplex is a special simplex that is also a regular
polytope. For example, a 2-simplex is a regular triangle, and a 3-
simplex is a regular tetrahedron. It has been proved that all regular
m-simplex [4] in R™ with pairwise distance 1 are congruent. That
is, all regular m-simplex with pairwise distance 1 are identical under
translation, rotation and reflection. Suppose there are c classes, our
goal is to construct a regular ¢ — 1-simplex as the ideal subspace. We
will give the construction procedure as follows.

Lets; € R°7'i = 1,2,...,c, be the vertex of one regular
¢ — 1-simplex and denote S = [s1,...,sc]. One can construct S
recursively. The elements in S can be calculated as

Si+1,i+1 =

Si+1,5 = - C

Sjit1t = 0,7=i+2,...,c—1. 4
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This recursive calculation is repeated until ¢ = ¢ — 2 and all the
vertices s; will be obtained.
It is easy to check that

dosi = 0i=12...c

siTsi = 1,1=12,...,¢c
2 . .
llsi =sill2 = \/2=2s]s; = /24— . Vi#j. (©)

In other words, the vertices of regular ¢ — 1-simplex have zero mean,
unit norm and equal pairwise distance.

3.2. Linear Simplex Analysis

Given the ideal subspace for any ¢ > 1, our criterion in Eq.(4) is up

to a scale /2 + —=5 equivalent to

WTXi = Sj,ifyi = ] (7)

Since the criterion has a close relation with regular simplex, we call
this criterion as Regular Simplex Criterion.

From Eq.(7), we find that Regular Simplex Criterion can be ap-
proximated by least square regression,

> yi—-Wixi)? = (Y - WTX), (8)

=1

where X = [le'“ AuYn] S Re™1Xn g

defined as

,xp] and Y = [y1,..

Yi=8;,Yi = J. ©
The solution of Eq.(8) is

= XxXxX")'xy”, (10)

where W is the project we pursue. We call this supervised fea-

ture extraction method Linear Simplex Analysis (LSA). It should be

noted that the projection learned by LSA is usually not orthogonal,

while the projections learned by LDA and MMC are orthogonal.
We summarize the LSA method in Algorithm 1.

Algorithm 1 Linear Simplex Analysis

Input:Training set {X;, yi i1,
Output: W € R¥*¢;
1.Construct the regular ¢ — 1-simplex S by Eq.(5);
2.For ¢ = 1ton Do
Y(:7 Z) = S(:, yL):
End For;

3. Calculate the projection W = (XX7)~!'XY7.

3.3. Relation with LDA

It is very interesting to show that LDA can also be formulated as
least square regression [5] as in Eq.(8) where Y € R*™ is defined

=5, ifyi=
as Yj; = i . Tt is easy to check that

7, otherwise
Y also has zero mean. So LDA aims to find a projection to align
the subspace to a c-simplex with vertex s; = [—/ 22, ..., /% —
J



3 —\/E}T. However, this simplex is not regular, so it is
n n
not congruent, i.e. it is not identical under translation, rotation and

reflection.

4. REGULARIZED SIMPLEX ANALYSIS

Due to limited training examples, the variance of the estimated W
by least square regression may be large and thus the estimation is
not reliable. Especially, when the number of features d is larger
than the number of samples n, XX is singular that the least square
regression is ill-posed. An effective way to overcome this problem is
to penalize the norm of W, e.g. Lo norm. Linear regression with Lo
norm regularization is known as ridge regression [1]. The objective
function of the multivariate ridge regression is

D vi— W) + \|W]|%
1=1
= (YY" —2W'XY" + WIXX"W) + Ar(W''W),
(11)

where A\ is a regularizer controls balance between the model
complexity and the empirical loss, X = (x1,...,Xn), Y =
(¥1,...,yn) is defined in Eq.(9). Taking the derivative with respect
to W and set it to zero, we have the solution of the multivariate
ridge regression as

W= (XX" +AD7'XY". (12)

We call this regularized linear simplex analysis as Regularized Sim-
plex Analysis (RSA).

Given a testing data set X* = [x%, ..., x!], the projection can
be calculated by
Z' =W'X" = YXT(XX" + A1) ' X" (13)

5. KERNEL SIMPLEX ANALYSIS

The methods proposed above are all linear methods. They may fail
to discover the intrinsic geometry when the data is highly nonlinear.
In this section, we utilize the kernel trick to generalize the RSA to
Reproducing Kernel Hilbert Space (RKHS) [6], namely KSA.

We consider the problem in a feature space F induced by some
nonlinear mapping ¢ : R — F. For a proper chosen ¢, the inner
product (, ) in F is defined as

(0(x),6(y)) = K(x,y), (14)

where K (, ) is a positive semi-definite kernel function. The mostly
used kernel functions include:
1. Polynomial Kernel: K (x,y) = (1 + (x,y))%

2. Gaussian Kernel: K (x,y) = exp(—”";ig’”?).

Before we give KSA, we first present a theorem in the following.
Theorem 1 (XX7 + A1) ' XY” = X(XTX + A1)~ 'Y7”.
Proof: See Appendix A.

By Theorem 1, Eq.(12) equals to

W=XX"X+A1)"'Y". (15)

Let ® = [¢(x1), ¢(x2),. .., P(xn)] denote the data matrix in
RKHS, then Eq.(15) can be written as follows:

W=30@"d+A\I) 'Y =d(K+AI)'YT,  (16)
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where K is the kernel matrix with element K;; = K (%, x;).
Given a testing data set X" = [x},...,x}], the projection of
KSA is

Z'=WTd' = Y(K+ ) '¢"d" = Y(K+ AI) "K', (17)

where @' = [¢(x}), p(x5), ..., ¢(x})] and K* is the kernel matrix
with element K;; = K (x;,x5).

6. EXPERIMENTS

In this experiment, we compare the proposed methods with Fisher
Criterion and Maximum Margin Criterion on the UCI [7] machine
learning benchmark database (e.g. wine, glass, yeast, image, iono-
sphere, waveform). We choose Nearest Neighbor as the classifi-
cation algorithm. For each method, we project the data to 1 ~
min(c— 1, d) dimensions, and choose the best dimensionality corre-
sponding to best classification accuracy. We use Gaussian kernel for
all the kernel based methods. The hyperparameters in the methods,
e.g. regularizer A in RDA and RSA, ¢ in Gaussian kernel, are tuned
by 5-fold cross validation on the training set. We randomly choose
{30%, 40%, 50%, 60%, 70%} of the data for training and the rest
for testing. Since the training samples are randomly chosen, we re-
peat this experiment 10 times and calculate the average result.

Table.1 summarizes the characteristics of the subset of UCI ma-
chine learning database used in this experiment.

Table 1. Description of a subset of UCI database

Datasets #samples (n) | #features (d) | #classes (c)
wine 178 13 3
glass 214 9 6
yeast 1484 8 10
image 210 19 7

ionosphere 351 34 2
waveform 5000 21 3

In order to compare Regular Simplex Criterion with Fisher Cri-
terion and Maximum Margin Criterion clearly, we list the classifica-
tion result of Fisher Criterion (LDA, RDA), Maximum Margin Cri-
terion (MMC) and Regular Simplex Criterion (LSA, RSA) in Fig.
1. We can find that on wine, yeast, ionosphere and waveform data,
the performance of Regular Simplex Criterion is nearly the same as
Fisher Criterion and Maximum Margin Criterion. On image data,
Regular Simplex Criterion is the best. And on glass data, Maximum
Margin Criterion is the best. It should be noted that the reason that
LSA performs not very well on image and ionosphere is due to the
singularity of XX in Eq.(10). Thus RSA is needed. In summary,
Regular Simplex Criterion is as good as Fisher Criterion and Max-
imum Margin Criterion, and it is even better than Fisher Criterion
and Maximum Margin Criterion at some time.

Table 2 lists the classification results of LDA, RDA, Kernel Dis-
criminant Analysis (KDA), MMC, LSA, RSA and KSA of 50% for
training and the rest for testing. The performance of methods under
Regular Simplex Criterion usually takes the first place. And KSA is
especially good on all the datasets.

In summary, Regular Simplex Criterion may provide an alterna-
tive of Fisher Criterion and Maximum Margin Criterion. At least,
users in machine learning and other related areas have another can-
didate criterion, i.e. Regular Simplex Criterion, for algorithm design
or straightforward application.
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Fig. 1. Classification accuracy on the ORL database with 30%, 40%, 50%, 60%), 70% samples randomly selected for training and the rest for

testing.

Table 2. Classification accuracy on UCI database of 50% for train-
ing and the rest for testing

wine glass yeast | image iono wave
LDA | 97.27 | 58.57 | 50.69 | 33.81 | 74.23 | 81.54
RDA | 97.27 | 58.95 | 51.56 | 57.52 | 81.43 | 81.52
KDA | 96.59 | 62.86 | 52.77 | 87.62 | 93.14 | 81.55
MMC | 68.52 | 67.62 | 51.12 | 76.48 | 74.51 | 64.85
LSA | 97.95 | 58.76 | 50.70 | 14.29 | 64.00 | 81.53
RSA | 97.16 | 64.38 | 50.87 | 90.86 | 82.74 | 81.47
KSA | 96.59 | 94.29 | 96.14 | 100.0 | 99.43 | 99.88

7. CONCLUSIONS

The contributions of this paper include three folds: (1) We propose
a new criterion, called Regular Simplex Criterion for feature ex-
traction; (2) We present a novel dimensionality reduction method,
namely Linear Simplex Analysis (LSA) under the Regular Simplex
Criterion; (3) Several variants of LSA, e.g. RSA and KSA, are also
proposed. Encouraging experimental results on UCI machine learn-
ing database indicate that the new criterion as well as the proposed
methods are very effective.
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Appendix A

Proof: Since W = (XX” + AI)"'XY7. then

(XX" + D)W = XY”
XX"W 4+ AW = XY”
W= %X(YT - X"W)

=

=

LetZ = +(Y" — X"W) then
W = XZ
= M =YT - XTW=YT - XTXZ
= Y'=X"X+MNZ
=  Z=X"X+N'Y"
Therefore

W =XX"X +)'Y”



