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ABSTRACT

In this paper, we propose a novel nonparametric modeling

technique, namely Space Kernel Analysis (SKA), as a re-

sult of the definition of the space kernel. We analyze the

uncertainty of SKA and show that SKA is subjected to the

bias/variance dilemma. Nevertheless, we demonstrate that,

by a proper choice of the space kernel matrix, SKA is able

to balance between the robustness and accuracy and hence

outperforms other kernel-based learning methods. The cost

function of SKA is derived, and it proves that SKA minimizes

the Weighted Least Squared cost function whose weight ma-

trix is diagonal and determined by the space kernel matrix.

The parallels between SKA and several other nonparametric

modeling techniques are examined. Study shows that the tra-

ditional Kernel Regression, General Regression Neural Net-

work, Similarity Based Modeling and Radial Basis Function

Network are examples of SKA with specified space kernel

matrices.

Index Terms— kernels, nonparametric methods, uncer-

tainty analysis, cost function

1. INTRODUCTION

Nonparametric methods provide an explanatory and diagnos-

tic tool to study the association between covariates and re-

sponses in complex data sets. As distribution free methods,

they do not rely on assumptions that the data are drawn from

a given probability distribution. In the context of condition

based monitoring and fault detection, a number of nonpara-

metric methods have been applied successfully, and among

which the kernel-based learning methods have been studied

extensively due to their outstanding performance in real world

applications [1].

The most widely studied problems attached to kernel-

based learning methods are the identification of appropriate

kernel functions and the bandwidth choice. A key paper

is [2], in which data-driven bandwidth selectors are dis-

cussed. As a result of the issue, one well-known limitation

of the kernel-based learning methods is the bias/variance

dilemma [3]. Another limitation due to the extension of
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kernel theory in multivariate regression is the ”curse of di-

mensionality” phenomena [4], which makes the estimate of

high-dimensional regression function notoriously difficult.

Because of the presumption of smoothness in the data most

realizations of Kernel Regression (KR) made, KR is used

to produce a smooth estimate of the regression surface, and

it’s hard to choose a global optimal width in KR involving

high-dimensional data sets.

To balance the tradeoff between bias and variance, we

propose a novel kernel-based learning method, namely Space

Kernel Analysis (SKA). Other than the traditional kernel

which operates between two vectors, the space kernel in SKA

is defined between a vector and a space. We analyze the un-

certainty of SKA and show that SKA is also subjected to the

bias/variance dilemma. However, by a proper choice of the

space kernel matrix, SKA is able to outperform other kernel-

based learning methods. We further study the cost function

of SKA, which in the end indicates that SKA produces a

Weighted Least Squared (WLS) estimate. Several nonpara-

metric techniques, including KR, General Regression Neural

Network (GRNN), Similarity Based Modeling (SBM) and

Radial Basis Function Network (RBNF), are examined in this

paper, which turn out to be examples of SKA with specified

space kernel matrices. The rest of this paper is organized as

follows. We first describe the mathematics behind SKA in

Section 2. Subsequently, we illustrate SKA with some well-

understood nonparametric techniques in Section 3. Finally,

we conclude our work in Section 4.

2. SPACE KERNEL ANALYSIS

2.1. A Mathematical Framework for Space Kernel Anal-
ysis

A typical learning problem involves an input vector X
and a response vector Y , where the pair (X, Y ) obeys

some unknown joint probability distribution. A training set

{(X1, Y1),· · · , (XL, YL)} is a collection of observed (X, Y )
pairs. The signal model which has m data sources is,

Yi = f(Xi) + εi, i = 1, · · · , L, (1)

where f = [f1, · · · , fm]T : R
m → R

m is the underlying

dependency, εi is the zero-mean noise sample and E[εi ·εT
j ] =
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Θ·δij where δij is the Kronecker delta function. All vectors in

this paper are column vectors unless otherwise specified. The

standard regression task is to estimate the unknown function

f(·) based solely on the training set. Typically, f(·) is chosen

to minimize some loss function, e.g., the sum of observed

squared errors
∑L

i=1 ‖Yi − f(Xi)‖2.

The idea of estimating f(·) applying a locally weighted

average can be traced back to the regressogram proposed by

Tukey [5], which partitions the training set into several sub-

sets and then averages the response vectors Y inside each sub-

set. The regressogram produces a quite rough estimate due to

its stepwise nature. A natural extension of the regressogram

is the moving window estimate, which averages Y based on

a centered neighborhood of X [Chapter 3][6]. For further de-

velopment, we generalize the estimate as a weighted average,

where the weights are determined by some kernel function

K and space kernel matrix A. The kernel K is a bounded

and integrable real-valued function, and the space kernel ma-

trix A is an L × L matrix defined on the training set. Usu-

ally, K(X1, X2) is taken to be a positive symmetric function

which achieves its maximum when X1 = X2 and monotoni-

cally decreases with ‖X1 − X2‖. Without loss of generality,

we assume that the maximum value of K is 1. Matrix A re-

trieves information from the training set and hence enables

the learning process adaptable to various regression surfaces.

Denote [X1, · · · , XL] and [Y1, · · · , YL] by Xtr and Ytr re-

spectively, which are m × L matrices. The output of SKA at

a given input Xn is

Yn = f̂SKA(Xn) =

∑L
i=1 Yi

∑L
j=1 AijK(Xj , Xn)∑L

i=1

∑L
j=1 AijK(Xj , Xn)

, (2)

which can be rewritten in the compact form

Yn =
Ytr · A · (XT

tr ⊗ Xn)
1T · A · (XT

tr ⊗ Xn)
=

Ytr · KS(Xtr, Xn)
1T · KS(Xtr, Xn)

. (3)

Here ⊗ is the similarity operator defined as (XT
tr ⊗ Xn) =

[K(X1, Xn), · · · ,K(XL, Xn)]T , 1 is an L×1 vector with all

elements being 1, and

KS(Xtr, Xn) = A · (XT
tr ⊗ Xn), (4)

is the space kernel which is an L × 1 vector giving the simi-

larity between Xn and Xtr. Notice that, while the traditional

kernel K operates between two vectors, the space kernel KS

operates between a vector and a space.

2.2. Bias/Variance Dilemma

A measure of the effectiveness of f(·) as a predictor of Yn

at a future input Xn is the mean squared error, which can be

decomposed into bias and variance components [3],

ED[‖Yn − f(Xn)‖2] =ED[‖Yn − ED[Yn]‖2]+

ED[‖ED[Yn] − f(Xn)‖2]

=Var + BiasT · Bias, (5)

where ED[·] represents expectation over the ensemble of pos-

sible Xtr for a fixed sample size L.

The Taylor series of f(Xi) at Xn is,

f(Xi) = f(Xn) + ∇f(Xn) · (Xi − Xn) + · · · , (6)

where ∇f(Xn) = [∇f1(Xn), · · · ,∇fm(Xn)]T is an m × m
matrix. Denote KS(Xtr, Xn) by KS , and let b2 = (1T ·
KS)−1 be a non-zero scalar. By combination of (1) (3) and

(6), we can easily derive that,

ED[Yn]=f(Xn)+∇f(Xn)·[X1−Xn,· · ·, XL−Xn]·KS·b2+· · · .
(7)

Therefore, the bias, which is an m × 1 vector, is

Bias =ED[Yn] − f(Xn)
=∇f(Xn) · [X1−Xn,· · ·, XL−Xn]·KS ·b2 + · · · . (8)

Assuming the independency of m data sources, i.e., ∇kf(Xn)=
diag{∂kf1(Xn)

∂Xk
n,1

, · · · , ∂kfm(Xn)
∂Xk

n,m
}, k ∈ Z

+, where Xn,i is the

ith element of Xn, the bias for the ith data source is

[Bias]i =
∂fi(Xn)
∂Xn,i

·([X1,i−Xn,i,· · ·, XL,i−Xn,i]·KS ·b2)+· · · .

(9)

Notice that the bias increases when the curvature of regression

surface, i.e.,
∂kfi(Xn)

∂Xk
n,i

, increases. This phenomenon has been

observed in several kernel-based learning methods [7].

Given that only the first M terms are kept in (9) and
∂kfi(Xn)

∂Xk
n,i

�= 0, to have [Bias]i = 0, we should have

[(X1,i−Xn,i)k,· · ·, (XL,i−Xn,i)k]·KS = 0, k = 1,· · ·,M,
(10)

That is, KS should be orthogonal to vectors ΔXi,k =
[(X1,i − Xn,i)k, · · · , (XL,i − Xn,i)k]T , k = 1, · · · ,M .

Notice that the larger the dimensionality L of KS , the larger

the M for which (10) may hold true, and hence the less

the bias. This is intuitive from the point of view that more

observations usually results in more accurate estimate.

The variance, which is a scalar, can be easily derived as

Var = ED[‖Yn − ED[Yn]‖2]

= ED[([ε1, · · · , εL] · KS · b2)T · ([ε1, · · · , εL] · KS · b2)]

= Trace(Θ) · ∥∥KS/(1T · KS)
∥∥2

. (11)

which achieves the minimum when all the elements in KS are

identical. Notice that, when 1T ΔXi,k �= 0 which is the most

likely case, this condition is incompatible with the condition

under which (10) holds. Therefore, SKA is also subjected to

the bias/variance dilemma.

An algorithm is implemented such that the bias is mini-

mized to some order M , i.e., matrix A is generated at each

Xn such that (10) is satisfied. An example is shown in Fig.

1(a) when y = 2 sin(x2) + 0.5x. We observe that the esti-

mates exhibit high variance even when M is relatively large.

The reason is that the algorithm is implemented such that only

the bias is minimized regardless of the variance.
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(a) Bias is minimized to different orders of Taylor series.
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(b) Space kernel matrix A is the power of G matrix.

Fig. 1. SKA estimates of y = 2 sin(x2) + 0.5x.

2.3. Cost Function for Space Kernel Analysis

A linear regression model is given by

Y = Xβ + ν, (12)

where Y is an L × 1 vector, X is an L × m design matrix, β
is an m × 1 vector of unknown parameters, ν is a zero-mean

L × 1 vector and E[ν · νT ] = σ2Λ, Λ = diag( 1
λ1

, · · · , 1
λL

).
If X is of full rank m, the unique solution to minimizing the

cost function

EWLS = (Y − Xβ)T W (Y − Xβ) (13)

is the Weighted Least Squares (WLS) estimate

β̂WLS = (XT WX)−1XT WY, (14)

where W = Λ−1 is the weight matrix [Chapter 4] [8].

Let Y = Y T
tr , X = 1, β = Y T

n , and

W = diag(KS(Xtr, Xn)) = diag(A · (XT
tr ⊗ Xn)), (15)

in model (12). The minimization to (13) results in

Y T
n =

1T · diag(A · (XT
tr ⊗ Xn))

1T · diag(A · (XT
tr ⊗ Xn)) · 1 · Y T

tr

=
(

Ytr · A · (XT
tr ⊗ Xn)

1T · A · (XT
tr ⊗ Xn)

)T

, (16)

which is equivalent to SKA shown in (3). As a result of (15),

we are able to adjust the weights in (13) by handling the ma-

trix A, which allows the adaptability and flexibility of SKA.

The square matrix G = (XT
tr ⊗ Xtr) is commonly desig-

nated as the similarity matrix. We will study the role of G in

SKA when A = Gm, m ∈ Z in the following.

Lemma 1: Given a semi-positive matrix W0 = diag(w(0)
1 ,

· · · , w
(0)
L ) � 0, if

w
(0)
i

w
(0)
j

≥ 1 holds for some i �= j, 1 ≤
i, j ≤ L, we have the following inequality hold for matrix

Wt =diag(Gt · W0 · 1) = diag(w(t)
1 ,· · ·, w(t)

L ) � 0, t ∈ Z
+:

1 ≤ w
(t)
i

w
(t)
j

≤ w
(t−1)
i

w
(t−1)
j

≤ · · · ≤ w
(0)
i

w
(0)
j

. (17)

Proof: This lemma can be proved by induction.

(i) When t = 1, we have

W1 = diag(G · W0 · 1) = diag(w(1)
1 , · · · , w

(1)
L ), (18)

where w
(1)
i =

∑L
k=1(X

T
i ⊗Xk) ·w(0)

k ≥ 0. Denote
w

(0)
i

w
(0)
j

by

p such that p ≥ 1 and p = ∞ when w
(0)
j = 0. Therefore,

w
(1)
i

w
(1)
j

=

p · w(0)
j +(XT

i ⊗ Xj) · w(0)
j +

∑
k �=i,j

(XT
i ⊗ Xk) · w(0)

k

w
(0)
j +p · (XT

j ⊗ Xi) · w(0)
j +

∑
k �=i,j

(XT
j ⊗ Xk) · w(0)

k

.

(19)

Denote the denominator in (19) by Ψ, and we have,

w
(1)
i

w
(1)
j

− w
(0)
i

w
(0)
j

∼=
(1 − p) · ∑k �=i,j(X

T
i ⊗ Xk) · w(0)

k

Ψ

+
(1 − p2) · (XT

i ⊗ Xj) · w(0)
j

Ψ
(20)

≤ 0, (21)

where (20) follows from the assumption that
∑

k �=i,j(X
T
i ⊗

Xk) ·w(0)
k

∼= ∑
k �=i,j(X

T
j ⊗Xk) ·w(0)

k and (21) follows from

the fact that p ≥ 1, w
(0)
i ≥ 0, (XT

i ⊗ Xj) ≥ 0, 1 ≤ i, j ≤ L.

Equality holds if and only if p = 1. Furthermore,

w
(1)
i

w
(1)
j

− 1 ∼=
(p − 1)·

(
w

(0)
j −(XT

i ⊗ Xj)·w(0)
j

)
Ψ

≥0, (22)

which follows from the fact that (XT
i ⊗Xj) = (XT

j ⊗Xi) <
1, ∀i �= j. Equality holds if and only if p = 1.

(ii) When t = k, k ∈ Z
+, we postulate that (17) is true.

(iii) When t = k + 1, we have Wk+1 = diag(Gk+1 ·
W0 · 1) = diag(G · Wk · 1), where Wk � 0 and

w
(k)
i

w
(k)
j

≥ 1

according to the postulate in (ii). Therefore, (17) holds for

Wk+1 following the similar steps in (i). �
Lemma 1 indicates that the similarity matrix G smoothes

the estimate which converges in the training space when A=
Gt, t → ∞. An example when A = Gt, t =−1, 0, 5, 150 is

shown in Fig. 1(b), which corroborates with the analysis.
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3. EXAMPLES OF SPACE KERNEL ANALYSIS

The Nadaray-Watson Kernel Regression (NW-KR) is the

most popular nonparametric estimator and is defined as [6]

fNW(Xn) =
∑

i YiK(Xn, Xi)∑
i K(Xn, Xi)

=
Ytr · (XT

tr ⊗ Xn)
1T · (XT

tr ⊗ Xn)
, (23)

which is equivalent to (3) when A = I . While the General

Regression Neural Network (GRNN) proposed by Specht [9]

is in fact an example of NW-KR where the kernel is a Gaus-

sian function, it is also an example of SKA when A = I .

As an interpolation technique, Similarity Based Method

(SBM) is designed to exactly fit the training data [10]. The

definition of SBM is

fSBM(Xn) =
Ytr · (XT

tr ⊗ Xtr)−1 · (XT
tr ⊗ Xn)

1T · (XT
tr ⊗ Xtr)−1 · (XT

tr ⊗ Xn)
, (24)

which is equivalent to (3) when A = G−1 = (XT
tr ⊗ Xtr)−1.

The output of a normalized general Radial Basis Function

Network (RBFN) is [11],

fG
RB(Xn) =

∑L
i=1 ciwi∑L
i=1 wi

=
∑L

i=1 ciRi(Xn, Xi)∑L
i=1 Ri(Xn, Xi)

, (25)

where ci is the connection weight and Ri(·) is typically a

Gaussian function centered at Xi. Comparing (25) with (23),

we notice that the general RBFN is actually an NW-KR where

the kernel is a Gaussian function, i.e., GRNN.

A Gaussian interpolation RBFN, which yields exact de-

sired outputs for all training data, is defined as [Chapter 9][12]

f I
RB(X)=

L∑
i=1

ci exp
[−‖Xi−X‖2

2σ2
i

]
=

L∑
i=1

ciK(X, Xi), (26)

where σi is the given width parameter and ci is the unknown

weight coefficient. Rewrite (26) in a compact matrix form

when X = Xi, i = 1, · · · , L, and we have

Ytr = C · G, (27)

where Ytr = [f(X1), · · · , f(XL)], C = [c1, · · · , cL], and

G = (XT
tr ⊗ Xtr) is the similarity matrix. When G is nonsin-

gular, we have a unique solution to (27),

C = Ytr · G−1. (28)

Therefore, the output of interpolation RNBF at input Xn is

Yn =C · (XT
tr ⊗Xn)=Ytr · (XT

tr ⊗Xtr)−1 · (XT
tr ⊗Xn), (29)

which is equivalent to SBM, i.e., SKA where A = G−1, with-

out the coefficients normalization step.

4. CONCLUSION

The definition of space kernel is given in this paper, which

gives the similarity between a vector and a space. As a

result, a novel nonparametric modeling technique, namely

Space Kernel Analysis (SKA), is studied. The uncertainty

analysis of SKA demonstrates that SKA is subjected to the

bias/variance dilemma like many other kernel-based learning

methods. However, by a proper choice of the space kernel

matrix, SKA is able to balance between the robustness and ac-

curacy as required. Further study shows that SKA minimizes

the cost function in WLS estimate whose weight matrix is

determined by the space kernel. The parallels between SKA

and several other nonparametric modeling techniques are

examined, which show that some well-known nonparamet-

ric modeling techniques, including Kernel Regression (KR),

General Regression Neural Network (GRNN), Similarity

Based Method (SBM) and Radial Basis Function Network

(RBFN), are examples of SKA where space kernel matrix is

specified with various matrices.
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