
AFFINELY CONSTRAINED ONLINE LEARNING
AND ITS APPLICATION TO BEAMFORMING

Konstantinos Slavakis

Univ. of Peloponnese, Tripolis 22100, Greece.
Email: slavakis@uop.gr.

Sergios Theodoridis

Univ. of Athens, Athens 15784, Greece.
Email: stheodor@di.uoa.gr.

ABSTRACT

This paper presents a novel method for incorporating a-priori affine
constraints in online kernel-based learning tasks. The proposed tech-
nique elaborates the generic tool of projections to form a sequence
of estimates in Reproducing Kernel Hilbert Spaces (RKHS). The
method guarantees that the whole sequence of estimates lies in the
given affine constraint set. To validate the algorithm, a beamform-
ing task is considered. The numerical results show that the proposed
frame provides with solutions in cases where the classical linear ap-
proach collapses, and forms proper beam-patterns as opposed to a
recent unconstrained kernel-based regression method.

Index Terms— Learning systems, Beamforming.

1. INTRODUCTION

Kernel methods have become recently the main tool for translating
classical linear supervised and unsupervised techniques to nonlinear
learning algorithms [1]. The key point of kernel methods is that they
offer an efficient way, a nonlinear (implicit) mapping, which “trans-
fers” the processing from a given low dimensional data space to the
feature space; a very high (possibly infinite) dimensional Reproduc-
ing Kernel Hilbert Space (RKHS) H [1]. This nonlinear mapping
is supplied by a kernel function which, basically, defines the feature
space H.

Kernel methods have been shown to be highly successful,
mainly through batch settings like the celebrated Support Vector
Machine (SVM) framework [1]. However, batch methods face
insurmountable computational obstacles when applied to online
adaptive settings, i.e., cases where data arrive sequentially, and the
environments exhibit slow variation. Since these obstacles reduce
the applicability of kernel methods, recent research focuses on the
development of genuine online algorithms [2, 3].

This paper focuses on online kernel methods under the a-priori
information that the estimandum satisfies an affine constraint. An
algorithmic solution is derived and validated in the context of beam-
forming. It is demonstrated that with only a few array elements,
an enhanced performance is achieved compared to previously used
techniques. In other words, we develop an algorithm, of linear com-
plexity with respect to the number of unknown parameters, for an
affinely constrained optimization task, for online settings, and in in-
finite dimensional Reproducing Kernel Hilbert Spaces (RKHS).

2. MATHEMATICAL PRELIMINARIES
2.1. Closed convex sets and projection mappings.
We will denote the set of all integers, nonnegative integers, posi-
tive integers, real and complex numbers by Z, Z≥0, Z>0, R and C

respectively. Henceforth, the symbol H will stand for a generally in-
finite dimensional real Hilbert space equipped with an inner product
denoted by 〈·, ·〉. The induced norm becomes ‖·‖ := 〈·, ·〉1/2.

Given a point f ∈ H and a closed convex set C ⊆ H, a way
to move from f to a point in C is by means of the metric projection

mapping PC onto C, which is defined as the mapping that takes f to
the uniquely existing point PC(f) of C such that ‖f − PC(f)‖ =
inf{‖f − f ′‖ : f ′ ∈ C} [4].

2.2. Reproducing Kernel Hilbert Space (RKHS).
Let us consider here a special Hilbert space H. Assume that H con-
sists of functions defined on R

m, i.e., f : R
m → R, for some

m ∈ Z>0. The function κ(·, ·) : R
m × R

m → R is called a re-
producing kernel of H if κ(x, ·) ∈ H, ∀x ∈ R

m, and if ∀x ∈ R
m

and ∀f ∈ H, f(x) = 〈f, κ(x, ·)〉 (reproducing property). In this
case, H is called a Reproducing Kernel Hilbert Space (RKHS) [1].

Celebrated examples of reproducing kernels are i) the linear ker-
nel (here the associated RKHS is the space R

m itself [1]), and ii) the

Gaussian kernel κ(x, y) := exp(− (x−y)t(x−y)

2σ2), ∀x, y ∈ R
m,

where σ > 0 (here the RKHS is of infinite dimension [1]), and the
superscript t stands for transposition.

3. AFFINELY CONSTRAINED ONLINE LEARNING

We assume a sequence of training data (xn)n∈Z≥0 which lies in the
Euclidean space R

m. Available is also another sequence of training
data (yn)n∈Z≥0 with values in R. Our online learning problem is
formed as that of finding an f in an RKHS H such that the differ-
ence f(xn) − yn is sufficiently “small” (in some sense), for a large
number of indexes n. Moreover, we would like to find a method
which also incorporates the additional a-priori information that the
desired f belongs also to an affine set V ⊂ H.

Our exposition evolves along the study of i) the affine constraint
set V , and ii) the cost functions formed by the incoming training
data.

3.1. The affine constraint set V .
An affine set (or linear variety) V is defined as the translate of a
linear subspace M , i.e., there exists a linear subspace M and a v ∈
V such that V = v + M [4, p. 31]. From now and on, we consider
M to be a closed linear subspace. The metric projection PV is given
by PV (f) = v + PM (f − v), ∀f ∈ H [4, p. 25]. The dimension of
the affine set V is defined as the dimension of the (unique) subspace
M [4, p. 248]. The codimension of the affine set V is defined as the
dimension of the orthogonal complement M⊥ [4, p. 133].

We consider here two examples of affine sets which cover most
of the practical situations met in signal processing and machine
learning tasks.

Example 1 (Finite dimensional affine set V) In this case, V is the
translate of a finite dimensional linear subspace M . In other words,
if v0 is a given point in V and if M is spanned by finite number of
elements {g1, . . . , gp} in H, then V := v0+M . The projection PM

has a simple analytic expression given by [4, p. 130]

PM (f) = [g1, . . . , gp]G†c, ∀f ∈ H. (1)

1573978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

In (1) the p × p matrix G, with Gij := 〈gi, gj〉, is a Gram matrix.
The symbol † denotes the Moore-Penrose pseudoinverse. The vector
c ∈ R

p is defined as c := [〈f, g1〉, . . . , 〈f, gp〉]t. Moreover, the
notation [g1, . . . , gp]γ :=

∑p
i=1 γigi, for any p-dimensional vector

γ .

Example 2 (Finite codimensional affine set V) Since the codi-
mension is defined as the dimension of the orthogonal complement
M⊥, and since our H(= M + M⊥) is, in general, infinite dimen-
sional, this case allows V to have infinite dimensions. Any finite
codimensional affine set V can be written as the intersection of a fi-
nite number of hyperplanes, i.e., V =

⋂p
i=1{f ∈ H : 〈f, gi〉 = ci},

for some g1, . . . , gp ∈ H , and some c := [c1, . . . , cp]t [4, p. 133].
The metric projection PV is given by the following simple analytic
formula: ∀f ∈ H,

PV (f) = f + [g1, . . . , gp]G†(ct − [〈f, g1〉, . . . , 〈f, gp〉]t). (2)

In order to get PM , set c equal to 0 in (2) (For a proof of (2) see [3,
Appendix A]).

3.2. Cost functions: the effect of the training data.
We will use now the information carried by the training sequences
(xn) and (yn) to form a sequence of cost objectives. It turns out
that this is equivalent to an infinite sequence of certain closed convex
constraints.

Our goal is to estimate f(·) so that the distance of f(xn) to
yn is “small” enough, for as many n as possible. To quantify this
rationale, we adopt the following sequence of cost functions, widely
used in robust statistics [1]: given a small positive ε > 0, let ∀n ∈
Z≥0,

Θn(f) := max{0, |f(xn) − yn| − ε}, ∀f ∈ H. (3)

For each n ∈ Z≥0, the set of minimizers of the non-differentiable
cost function (3) is obviously the set

S(n) = {f ∈ H : |〈f, κ(xn, ·)〉 − yn| ≤ ε}, (4)

where the inner product in (4) comes from the fundamental repro-
ducing property of the RKHS H seen in Section 2.2 and (3). The set
S(n) in (4) is a closed convex set, widely known as hyperslab. For
an illustration of a hyperslab see Fig. 1.

The projection mapping PS(n)(f) has a simple and analytic
form. It is also of linear complexity with respect to the number of
the kernel functions used for the representation of f . To express the
formula in a compact form, we introduce the following coefficients
(the proof is omitted due to lack of space): ∀n ∈ Z≥0,

βn :=

⎧⎪⎨
⎪⎩

yn−ε−〈f,κ(xn,·)〉
κ(xn,xn)

, if 〈f, κ(xn, ·)〉 < yn − ε,

0, if |〈f, κ(xn, ·)〉 − yn| ≤ ε,
yn+ε−〈f,κ(xn,·)〉

κ(xn,xn)
, if 〈f, κ(xn, ·)〉 > yn + ε.

(5)

Then, PS(n)(f) = f + βnκ(xn, ·), ∀n ∈ Z≥0, ∀f ∈ H.
It is well-known, as in the celebrated Affine Projection Algo-

rithm (APA) [3], that concurrent processing can increase the speed of
convergence of an algorithm. As such, at each iteration index n, we
consider a convex combination of loss functions (3) corresponding
to the hyperslabs of previous time instants, n, n− 1, . . . , n− q + 1.
This has a smoothing effect on the result. To this end, let the index
set

Jn :=

{
0, n, if n < q − 1,

n − q + 1, n, if n ≥ q − 1,
(6)

∑2
j=1 ω

(n)
j PS(n−j+1)(fn)

PS(n)(fn)

PS(n−1)(fn)

fn

S(n)

V

fn +
∑2

j=1 ω
(n)
j PM(PS(n−j+1)(fn) − fn)

S(n − 1)

fn+1

V ∩ S(n) ∩ S(n − 1)

Fig. 1. Illustration of the proposed algorithm (7). For simplicity, we
consider here only two hyperslabs: S(n) and S(n − 1). The set of

all convex combinations
∑

j∈Jn
ω

(n)
j PS(j)(fn) in (7) is denoted by

the dotted line. However, the extrapolation given by the parameter
μn takes us closer to the thick black line segment which denotes
the desired functions at index n. As time goes by, and due to the
online nature of the problem, the hyperslabs change according to the
incoming sequence of data, while the affine set V remains fixed. The
generated sequence of estimates (fn) given in (7) lies in V .

where the symbol j1, j2 := {j1, j1 + 1, . . . , j2}, for any integers
j1 ≤ j2, where q is a predefined positive integer. To quantify the
contribution of each hyperslab to such concurrent processing, we

assign a convex weight ω
(n)
j , i.e., ω

(n)
j ∈ [0, 1), and

∑
j∈Jn

ω
(n)
j =

1, to each j ∈ Jn.
To summarize, we seek for a point f in the intersection of the fol-

lowing infinite collection of closed convex sets: V ∩ (
⋂∞

n=n0
S(n)),

for, let’s, say some nonnegative integer n0.

4. THE ALGORITHM

For any f0 ∈ V , form the following sequence ∀n ∈ Z≥0,

fn+1 := fn + μn

∑
j∈Jn

ω
(n)
j PM (PS(j)(fn) − fn), (7)

where Jn is the index set of (6). In the case of Example 1, let
f0 := v0. In the case of Example 2 let for example f0 := PV (0).
The algorithmic solution (7) is based on the Adaptive Projected Sub-
gradient Method (APSM) [5]. The parameter μn is explained below.
A geometric illustration of (7) is depicted in Fig. 1. Since the projec-
tions involved in (7) are of linear computational load, the proposed
algorithm is of linear complexity with respect to the number of the
used kernel functions.

Due to the concurrency, i.e., the multiplicity of the constraints
that are processed at every n via the index set Jn, the relation (7) ex-
trapolates the projections mappings {PS(j)}j∈Jn . The range of the
extrapolation parameter μn, which affects the speed of convergence,
is calculated recursively within an iterative scheme as follows: given
the current estimate fn, μn takes values inside the interval [0, 2Mn],
where Mn is calculated by the following closed form:

Mn :=

⎧⎪⎪⎨
⎪⎪⎩

∑
j∈Jn

ω
(n)
j ‖PS(j)(fn)−fn‖2

‖∑
j∈Jn

ω
(n)
j PM (PS(j)(fn)−fn)‖2

,

if
∑

j∈Jn
ω

(n)
j PM (PS(j)(fn) − fn) /∈ M⊥,

1, otherwise,

(8)

where its complexity is of order O(q2) (the computational load is
shared with (7)). By the convexity of the function ‖·‖2 and the def-

1574

inition of Mn, we can derive that Mn ≥ 1. As such, μn can take
values ≥ 2. In general, the larger the μn, but with μn ≤ 2Mn,
the larger the extrapolation step in (7), which potentially accelerates
the algorithm. For the special case where Jn contains only a single
element, i.e., Jn := {n}, then we no longer have concurrency.

If we recall the definition of an affine set V as the translate of a
linear subspace M , i.e., V = v + M , for any v ∈ V , then it is easy
to see by induction, and the fact that f0 ∈ V , that for each iteration,
the sequence of estimates in (7) lie in V , i.e., (fn) ⊂ V .

Under mild conditions, the algorithm introduced in (7) possesses
a number of desirable theoretical properties: monotone approxima-
tion, strong convergence to a point that belongs both to V and to an
infinite sequence of hyperslabs (4), asymptotic minimization of the
sequence of cost functions (3), etc [5].

5. SPARSIFICATION

Let us give, now, an alternative expression for the sequence of es-
timates formed by (7). By using mathematical induction, one can
show (the proof is omitted due to lack of space) that

fn+1 =

p∑
i=1

γ
(n+1)
i gi +

n∑
j=0

η
(n+1)
j κ(xj , ·), ∀n, (9)

where the {gi}p
i=1 describe V (see Section 3.1), and where {γ(n+1)

i }p
i=1,

{η(n+1)
j }n

j=1 are appropriately defined real coefficients. This is ba-
sically a generalization of the celebrated Representer Theorem,
where, here, the first of the two sums is due to the affine constraint.

It is obvious that as the index n advances, more and more kernel
functions enter the series in (9), making the memory requirements
and the computational load to grow unbounded. This phenomenon
is shared by all online (sequential) kernel methods [2]. Hence, one of
the main issues in online methods is the sparsification of the kernel
series, such as the one appearing in (9).

Here we focus on the sparsification procedure introduced in [2]
and generalized in [3]. The method relies on the construction of
a basis Bn, i.e., a set of linearly independent kernel functions, for
every index n. The way to update the basis is based on fundamen-
tal linear algebra properties: whenever the incoming kernel function
κ(xn, ·) is approximately linearly independent to the already exist-
ing basis Bn−1, the basis is augmented by inserting κ(xn, ·) into
Bn−1: Bn := Bn−1 ∪ {κ(xn, ·)}. Otherwise, i.e., whenever the
incoming kernel κ(xn, ·) is approximately linearly dependent to the
existing Bn−1, the basis remains the same: Bn := Bn−1. The repre-
sentation of the kernel κ(xn, ·) as a linear combination of the basis
Bn elements will be denoted by πn(κ(xn, ·)) [3]. For details of the
sparsification method we refer the reader to [2, 3]. This sparsifica-
tion method is of quadratic complexity with respect to the cardinality
of the basis Bn. However, we stress here that besides this technique,
other approximating methods of linear complexity can be employed
for the sparsification of (9), e.g., see [6].

We apply now the sparsification technique to obtain an approx-
imate version of the algorithm (7) as follows. Recall from Section

3.2 that PS(j)(fn) − fn = β
(n)
j κ(xj , ·). Then, for any f0 ∈ V ,

f̃n+1 := f̃n + μ̃n

∑
j∈Jn

ω
(k)
j β̃

(n)
j PM (πn(κ(xj , ·))), ∀n, (10)

where μ̃n and M̃k are defined as in Section 4.

6. APPLICATION TO BEAMFORMING

We consider the system of Fig. 2. The steering vector associ-
ated with a planar wave of wavelength λ, arriving to a Uniform

Preprocessing

SOI 90◦

0◦

[
yn:=�(b0(k))

yn+1:=�(b0(k))

]
≈

[
f(xn)

f(xn+1)

]
xn, xn+1

Beamformer f ∈ H

C
N � r(k)

Jammer #J

Jammer #1

rN(k)r2(k)r1(k)

nN(k)n2(k)n1(k)

d

xn :=
[
�(r(k))
�(r(k))

]
, xn+1 :=

[
�(r(k))
−�(r(k))

]
, ∀k

b0(k)

Fig. 2. A Uniform Linear Antenna (ULA) of N elements, with an in-
terelement distance d > 0. The beamformer is the function f which
belongs to a Reproducing Kernel Hilbert Space (RKHS) H. The in-
dex k ∈ Z≥0 counts the number of snapshots received by the ULA.
Its connection with the index n is given by the relation n := 2k,
∀k ∈ Z≥0. To work with real vectors and to accommodate complex
input signals, a preprocessing step is applied prior the signal enters
the beamformer. The output is a two-dimensional real vector com-
prising from the real part �(·) and the imaginary part �(·) of the
beamformer’s output.

Linear Array (ULA) with an angle θ ∈ [0, π], called the Di-
rection Of Arrival (DOA), is defined as [7] s := s(θ, d, λ) :=

[1, e2πi d
λ

cos θ, . . . , e2πi(N−1) d
λ

cos θ]t ∈ C
N , where i :=

√−1.
The steering vector corresponding to the Signal Of Interest (SOI)
will be denoted by s0, while sj associates to the j-th jammer,
∀j ∈ 1, J , for J ∈ Z>0 (given integers j1 ≤ j2, define j1, j2 :=
{j1, j1 + 1, . . . , j2}).

The signal (r(k))k∈Z≥0 received by the ULA is given by

r(k) :=
∑J

l=0 αlbl(k)sl + n(k), ∀k ∈ Z≥0. The complex scalar

random processes (bl(k))k∈Z≥0 , l ∈ 0, J , denote the symbols car-
ried by the SOI and the jammers. The BPSK modulation scheme is
used here, so that bl(k) = ±1. The complex vector random process
(n(k))k∈Z≥0 ⊂ C

N stands for the additive noise. The complex

coefficients αl ∈ C, l ∈ 0, J , comprise a variety of parameters like
the signal power, channel attenuation, etc. In order to work with real
vectors, a complex vector in C

N is mapped to a vector in R
2N , by

using its real �(·) and its imaginary �(·) part, as shown in Fig. 2.

Here, we consider a limited number of array elements N := 3
with d/λ := 0.5. The SOI’s DOA is 90◦, and the DOAs of five
jammers are 30◦, 80◦, 95◦, 130◦, 160◦. Gaussian i.i.d. noise is used
to form the process (n(k)). The SNRs are given by 10, 20, 30, 30,
10, and 30 dB for the SOI and the jammers respectively. We used
the Gaussian kernel function for working in an infinite dimensional
RKHS H (see Section 2.2), with σ2 := 0.5 (The method appears to
be insensitive to small variations of the value of σ2).

A large variety of constraints for the classical linear beamform-
ing scenario are formed as affine sets [7]. The same rationale can
be used also in our nonlinear strategy. For example, given a steering
vector s ∈ C

N , one wishes the output of the beamformer, when re-
ceiving from a transmitter located at s, to be equal to a predefined
complex number e. If we define ŝ1 := [�(s),�(s)]t and ŝ2 :=
[�(s),−�(s)]t, as in Fig. 2, as well as c1 := �(e) and c2 := �(e),
then our wish takes the form f(ŝ1) = c1 and f(ŝ2) = c2. If we

1575

0 30 80 9095 130 160 180
−30

−25

−20

−15

−10

−5

0

5

Angles (deg.)

B
ea

m
 P

at
te

rn
 a

m
pl

itu
de

 (d
B

)
LCMV
KRLS
APSM

Fig. 3. Since both APSM and KRLS are nonlinear techniques, the
concept of “beam-pattern” is slightly different than the classical one
for linear methods. Notice that due to nonlinearity, the superposi-
tion of beam-patterns is no longer feasible. Hence, here, by “beam-
pattern” we mean the ability of a technique to form a solution that
satisfies the a-priori constraints imposed by the designer. The KRLS
offers unconstrained nonlinear regression, so it naturally shows in-
ability to control the beam-pattern of the ULA. The classical linear
approach of LCMV needs more antenna elements, i.e., more degrees
of freedom, to produce a narrower main lobe. The proposed affinely
constrained optimization approach of the APSM satisfies the affine
set constraint as can be seen by the sharp valley at the DOA of 95◦,
and the SINR value in Table 1.

recall the fundamental reproducing property of the RKHS H in Sec-
tion 2.2, then we form the following affine constraint set: V :=⋂2

l=1{f ∈ H : 〈f, κ(ŝl, ·)〉 = cl}. In other words, g1 := κ(ŝ1, ·)
and g2 := κ(ŝ2, ·) in Example 2. Let’s say that we wish the array to
have output 1 at the DOA of 90◦, and 0 at 95◦.

We choose q := 20 for the index set Jn (6), and all the convex

weights {ω(n)
j } are set equal to each other for every index n. The

extrapolation parameter μn := 1.95Mn, ∀n ∈ Z≥0. We let also
ε := 0.1 in (4) (The method appears to be insensitive to small vari-
ations of the value of ε. Moreover, for large changes, the behaviour
of the design was seen to be similar). The total number of complex
training data was set equal to 1000, a separate set of 200 complex test
data were used to validate the obtained results, and a set of 500 com-
plex data were used to calculate the corresponding SINRs. For each
realization of the experiment, we calculate the Root Mean Squared
(RMS) distance of the beamformer’s output to the BPSK symbols
±1, and the array beam-patterns. We performed 100 realizations
and uniformly averaged the results.

The proposed method (denoted by APSM) is compared to the
classical Linearly Constrained Minimum Variance (LCMV) beam-
former [7], and the nonlinear unconstrained regression approach re-
alized by the Kernel Recursive Least Squares (KRLS) algorithm [2].
The results are depicted in Figs. 3, 4, and Table 1.

7. CONCLUSIONS

This paper presented a novel online kernel-based learning method
for tasks where there is the a-priori knowledge that the desired func-
tion satisfies an affine constraint in the RKHS. The proposed method
generates a sequence of estimates which lies in the affine constraint.
The method is applied to the beamforming task, and it is shown that
only with a few array antenna elements, it outperforms significantly
the linear beamforming approach, and forms proper beam-patterns

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time index k (snapshots)

R
oo

t M
ea

n
Sq

ua
re

d
(R

M
S)

 d
is

ta
nc

e

LCMV
KRLS
APSM

Fig. 4. The average Root Mean Squared (RMS) distance to the
BPSK symbols ±1 in the plane R

2. These curves depict also the
convergence properties of the algorithms. Two variants of the spar-
sification method of Section 5 were used by controlling the parame-
ter ν [2]. The value ν = 0.25 resulted into a basis with average
cardinality 1789.2, while the value ν = 0.5 gave 1152.56 basis vec-
tors. However, all of the beam-patterns and the RMS distances were
almost similar for these two variants.

Input LCMV KRLS APSM

SINR (dB) -24.93 -22.57 Very low 21.01

Table 1. This table illustrates the various Signal to Interference and
Noise Ratios (SINR) for the elaborated methods. As in Fig. 3, the
SINR concept is slightly different here, for the nonlinear methods
APSM and KRLS, than the standard one for the linear techniques.
By SINR, and for the nonlinear APSM and KRLS, we mean the
difference in dB of the outputs of the array when “pointed to” di-
rections occupied by the respective transmitters. In other words, it
measures the beam-pattern formation in Fig. 3. The KRLS, as an un-
constrained kernel-based regression approach puts no effort on the
beam-pattern design, and resulted into a very low negative value for
the SINR.

as opposed to a recently unconstrained nonlinear regression tech-
nique.

8. REFERENCES

[1] B. Schölkopf and A. J. Smola, Learning with Kernels, MIT Press, Cam-
bridge, MA, 2001.

[2] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares
algorithm,” IEEE Trans. Signal Proc., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[3] K. Slavakis and S. Theodoridis, “Sliding window generalized ker-
nel affine projection algorithm using projection mappings,” EURASIP
Journal on Advances in Signal Processing, 2008, 16 pages,
doi:10.1155/2008/735351.

[4] F. Deutsch, Best approximation in inner product spaces, Springer-
Verlag, New York, 2001.

[5] I. Yamada and N. Ogura, “Adaptive Projected Subgradient Method for
asymptotic minimization of sequence of nonnegative convex functions,”
Numerical Functional Analysis and Optimization, vol. 25, no. 7&8, pp.
593–617, 2004.

[6] K. Slavakis, S. Theodoridis, and I. Yamada, “Online kernel-based classi-
fication using adaptive projection algorithms,” IEEE Trans. Signal Proc.,
vol. 56, no. 7, pp. 2781–2796, 2008.

[7] H. L. Van Trees, Optimum Array Processing: Part IV of Detection,
Estimation, and Modulation Theory, John Wiley & Sons, New York,
2002.

1576

