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ABSTRACT

We propose a multi-task learning (MTL) framework for non-
linear classification, based on an infinite set of local experts
in feature space. The usage of local experts enables sharing
at the expert-level, encouraging the borrowing of information
even if tasks are similar only in subregions of feature space.
A kernel stick-breaking process (KSBP) prior is imposed on
the underlying distribution of class labels, so that the number
of experts is inferred in the posterior and thus model selec-
tion issues are avoided. The MTL is implemented by impos-
ing a Dirichlet process (DP) prior on a layer above the task-
dependent KSBPs.

Index Terms— Multi-task learning, Classification, Ex-
pert, Dirichlet process, Kernel stick-breaking process

1. INTRODUCTION

Multi-task learning (MTL) [1], which allows the learning
of multiple tasks simultaneously to improve generalization
performance, has become an important topic in the machine
learning community. In recent research, a hierarchical struc-
ture has been favored, where information is transferred via
a common prior, within a hierarchical Bayesian model [2].
In [3], where a Dirichlet process (DP) [4] prior was intro-
duced as the common prior in hierarchical Bayesian models,
information is transferred only between related tasks.

To the best of our knowledge, most existing MTL clas-
sification algorithms allow for sharing only at the task-level
(two tasks share all of their data or none of their data, but do
not share partial data). In the work presented here we develop
a novel classification model with local (in feature space) ex-
perts, allowing for sharing subsets of local experts (and asso-
ciated data) across tasks. Although related to previous work
with local experts [5], the proposed model may have a theo-
retically infinite number of experts and thus model selection
issues are avoided. With experts as the basic components,
when sharing occurs between tasks it is not assumed that all
parameters must be shared (as required in [3]).

The task-dependent classifiers are based on a novel appli-
cation of the newly developed kernel stick-breaking process
(KSBP) [6], which is an augmentation of the stick-breaking
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representation of the DP [4]. To learn multiple tasks simul-
taneously, we impose a DP prior on the upper layer of the
hierarchical Bayesian model. Essentially, a “firm” of experts
with corresponding locations are provided, and each task “se-
lects” appropriate local experts automatically from the firm.

2. DIRICHLET PROCESS

2.1. Stick-Breaking Cunstruction

The stick-breaking construction [7] provides an explicit form
of a draw from a DP [4] prior. Specifically, assume a DP
prior with base measure Gy and precision parameter ov > 0 is
assigned on a measure G. It has been proven [7] that the draw
G may be constructed as

G=> mnde;, (1)
h=1

with 0 < 7, < land >, m, = 1 as., where §,, is a
Kronecker’s delta function and

h—1
= Vi [J(1 =), Vi ¥ Beta(1,a), 6} % Go.
=1

Since the weights {7, }7° , decrease stochastically with A, the
summation may be truncated with N terms, yielding an V-
level truncated approximation [8].

Assuming that the underlying variables {6;}! , are
drawn from G, the associated data y; ~ F(0;) will natu-
rally cluster about distinct values 8; taken by 6;. Therefore,
the number of clusters is automatically determined. In this
work y; correspond to labels, and we wish to make the model
dependent on the feature vector ;.

2.2. Kernel Stick-Breaking Process

Based on the stick-breaking construction, Dunson and Park
[6] proposed a class of kernel-based priors called the ker-
nel stick-breaking process (KSBP). The collection Gy =
{Gz : © € X} is assigned a KSBP prior, denoted Gy ~
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KSBP(a,b,Q,H) if forallx € X

=Y mn(@; Vi, Th)Gr, )
h=1
0 (25 Vi, Tn) = W (3 Vi, Tn) [ [{1 = W(a; Vi, T},
I<h
W(x; Vi, Tp) = Vi K(2,T'h),

where {V},, T},

ability weights V}, ~ Beta(ap, by), locations Ty, 2 H and

probability measures G, g Q; K(x,T},) defines a kernel

function. Comparing (2) with (1), we notice that a kernel
function at sample-independent locations I'y, is introduced as
adiscount on V},, and the further away « is from I';,, the larger
the penalty is. As a result, The KSBP prior reflects our belief
that nearby points in feature space tend to cluster together and
share a common G7,.

G172, is a countable sequence w1th prob-

3. CLASSIFIER WITH INFINITE LOCAL EXPERTS

3.1. Mathematical Model

Consider a c-class classification problem with a training size
of n, i.e., D = {@;,y;}! 1, where x; are feature vectors and
y; € {1,...,c} are labels. We assume that y; have multino-
mial distributions with probabilities 8; = [6;1,...,0;.]7 on
labels {1, ..., c} and impose a KSBP prior measure, i.e.,

Yi ~ Y 0ixk, 0;Ga, ~ Ga,, Gx ~ KSBP(1, a, Qo, Hy),
k=1

with G, =Y m(@i; Vi, Th, ¢0n) g, 3)
h=1

where T'j, (S Hy, V), (S Beta(1,«) and gy u Qo. Ac-
cording to (3), the prior measure of probabilities 6; is an infi-
nite mixture of experts gp, which are simply probability mass
functions over class labels, with weights 7}, data-dependent.
As in mixture models, we decouple the mixture components
by introducing an indicator z; for each data point such that
z; = h when the ith subject is assigned to the hth expert.

For the sake of conjugacy, we choose (g to be a Dirich-
let measure with parameter yug, and Hy to be a discrete
measure Hy(-) = Z]Lrl €;0f, () with a total of Lr discrete

location candidates 1"]. As discussed further when present-
ing results, if @; are of low dimension, it is possible to ran-
domly constitute I'; as draws from a continuous distribution
over the support of interest; for high-dimensional data we
simply use all the available data to define the set {T, }fil
This latter approach is related to the SVM [9] and RVM [10],
in the sense of selecting basis locations from available data
samples. Weights 7 (a;; Vi, Ty, 9bp) are defined as in Sec-
tion 2.2 except that the scale parameter of the kernel function
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is expressed explicitly, with K (x;, Ty, 1) = exp(—v¢y, ||
x; — Ty ||? /2) defined as a Gaussian kernel function. By
assigning a discrete prior on 1y, we infer ¢y, in principle and
allow that the variance of each cluster is distinct.

3.2. Posterior Inference

A Gibbs sampler with a data augmentation strategy is per-
formed to infer the posterior of the hidden variables for the
model of truncation level N. Due to space limitations, we
only provide details on the updating of V}, which involves
the data augmentation.

We introduce auxiliary variables A;;, ~ Bern(V},), and
Bin, ~ Bern(K(x;, Ty, 1)) forh = 1,...,N — 1 and let
A;n = B;ny = 1. Consequently, z; = min{h : A;;, = By, =
1} is equivalent to p(z; = h) = wp(xi; Vi, Thyp). Thus,
the conditional posteriors for V}, are

(Valz,Th, ¥n, @)
~Beta(l+ Y Ap,a+ > (1—Agp))
iz >h iizi>h
where forh =1,...,2; — 1,
(1=Vi)(A - K(z:i, T, ¥n))
1 —VaK (i, Th,ton)
(1 — Vh)K(.’Ei,I‘h,@/Jh)
1= Vi K (i, Tp,¢p)
— K(x;,Tp,n))
(i, Thyihn)

p(Ain = Bir, = 0]2;) =

p(Ain =0, By, = 1]2;) =

Va(1
Ain =1,Bin =0]z;) =
p(Ain , Bin = 0]z;) = 1 -V, K

for h = Zis Aih = Bih =1.

4. MULTI-TASK CLASSIFICATION WITH INFINITE
LOCAL EXPERTS

Assume we have M sets of data Dy, = {@umi, Ymi 117, and
our goal is to design a classifier for each data set and infer
classifier parameters for all the tasks simultaneously. In the
hierarchical Bayesian framework, we may borrow informa-
tion across those M tasks in several different ways since our
classification model for a single task is fairly flexible. For ex-
ample, we may impose that the whole model should be shared
if two tasks are similar, with no sharing otherwise, as in [3].
Instead, we prefer a partial sharing strategy so that data from
two tasks may be shared even when they are only partially
related. Specifically, we encourage the sharing of the local
experts g,,, and the associated locations I',,;, by imposing
an upper layer DP on their priors @, and H,, with a com-
mon precision 7, and base measures Qo and Hy, respectively.
The model could be denoted as

mi ~ Zemi,k(skz
k=1
GXm ~ ICSBP(la Qm, Q?Tlv Hm)?
Qm ® Hyy ~ DP(T, QO ® HO)

077”’ |G$7ni ~ Gwnvﬁ



The hierarchical KSBP implemented here is related to the
hierarchical DP (HDP) [11]; however, clear differences ex-
ist. In [11], only the supports of the lower layer DP draws
are shared; however, we share the locations appearing in a
kernel function as well. For the sake of inference, instead
of using one combined indicator as in [11], we decouple the
upper (inter-task) and bottom (intra-task) layers by explicitly
introducing indicators for both.

5. EXPERIMENTS

In the experiments below, the distribution Hy was in general
constituted by Ly = 1000 random draws from broad mul-
tivariate Gaussian distributions, and exceptions will be indi-
cated otherwise.

5.1. Single-Task Learning on Benchmark Data Sets
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Fig. 1. STL results on benchmark data sets. The area under the
ROC curves (AUC) (left) and the number of kernels used (right).
Error bars reflect the standard deviation across ten random partitions
of training and testing subsets.

In order to evaluate the proposed KSBP-STL classifier,
we consider three benchmark data sets available from the
UCI machine learning repository [12]: the Pima Indians
Diabetes database (Pima), Wisconsin Diagnostic Breast Can-
cer (WDBC) and the Johns Hopkins University Ionosphere
database (Ionosphere). For high-dimensional WDBC (30-d)
and Ionosphere (34-d) sets, we use all available data points
as location candidates T ; for Hy. Since the proposed model
is capable of handling nonlinear problem, we compare it with
both the SVM [9] and the RVM [10] with RBF kernels. As
discussed, the kernel parameters for the proposed model are

automatically inferred; however, those for the SVM and RVM
are preset to be five and one, respectively, which appear to be
the most appropriate values among several trials.

As in Figure 1, all classifiers are evaluated from two as-
pects: the number of kernels used (the right column), and the
area under the receive operating characteristics (ROC) curves
for the test subset (the left column). As indicated in Figure
1, the performance of the proposed KSBP classifier is con-
sistently comparable to the state-of-art classifiers with non-
linear kernels and appropriate kernel parameters. We also
observed that the KSBP classifier is as sparse as the RVM
classifier on average with a tighter variance, and generally
markedly sparser than the SVM.

5.2. Multi-Task Learning
5.2.1. Synthetic Data

To illustrate the local sharing mechanism of the KSBP-based
MTL model, we simulate six classification tasks in a 2-
dimensional space. As suggested by Figure 2, the data are
designed such that each row of tasks are generated from the
same underlying distributions and there is local similarity
between tasks in different rows.

Fig. 2. Six simulated tasks with the true labels dictated.

Figure 3 shows the estimated posterior probability of y =
1 as heat maps for a random partition with ten training data
each task. With such insufficient training data, the algorithm
automatically reveals the sophisticated sharing structure and
produces reasonable predictions. At the task-level, each row
of tasks share a common model, which can also be achieved
by a DP-based classifier as in [3]. However, only the ex-
pert at location I's is shared by all the tasks, while the other
experts are selectively shared, which is beyond the scope of
such a DP-based classifier without local components. Con-
sequently, on such a data set with clear local similarity, the
KSBP-based MTL algorithm generally outperforms the DP-
based MTL classifier proposed in [3]. (The plot is omitted
due to space limitations.)
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Fig. 3. Color heat map of the probability of y = 1 computed by
integrating across the full posterior for the parameters (10 training
samples each task). Depicted are locations (white big dots) and ker-
nel widths (radius of white dashed circles) of dominant sticks from
the 1000th MCMC sample.

5.2.2. Landmine Detection

In an application of landmine detection, data collected from
19 landmine fields [3] are treated as 19 subtasks. In all tasks,
each target is characterized by a 9-dimensional feature vector.
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Fig. 4. Average AUC on 19 tasks of landmine detection, for the
KSBP-based classifiers. Error bars reflect the standard deviation
across ten random partitions of training and testing subsets.

The average AUC over all the 19 tasks as given by the
STL, pooling and the MTL KSBP-based models are presented
in Figure 4, where we observe the impact of sharing. For
the STL, no information sharing among tasks is assumed; for
the pooling, data from all the tasks are imposed to share a
common underlying model; while for the MTL, sharing is en-
couraged only when tasks are at least partially related. As
a result, the STL suffers from insufficient training data, and
the assumption of a universal model impairs the performance
when training data are abundant, while the MTL always per-
forms best. This behavior coincides with what was presented
in [3] where logistic regression (LR) models were employed.
We also notice that (by comparing to [3]) the KSBP-based
STL classifier outperforms the linear LR STL classifier over-

all, while the KSBP-based MTL classifier performs compara-
bly to the LR MTL classifier [3].

6. CONCLUSIONS

We have proposed a supervised classification model capa-
ble of handling problems with nonlinear decision bound-
aries, without model selection issues. Experiments show
that the proposed STL model is comparable to state-of-art
classifiers with preset appropriate kernel parameters. With
task-dependent models consisting of local experts, we have
proposed a hierarchical Bayesian framework for multi-task
learning, which allows for partial sharing of information
across tasks. Encouraging results have been demonstrated on
simulated data, and on a multi-task data set corresponding to
a real sensing example.
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