
CONNECTING SPECTRAL AND SPRING METHODS FOR MANIFOLD LEARNING

Shannon M. Hughes, Peter J. Ramadge
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544

ABSTRACT
Diffusion Maps (DiffMaps) has recently provided a general frame-
work that unites many other spectral manifold learning algorithms,
including Laplacian Eigenmaps, and it has become one of the most
successful and popular frameworks for manifold learning to date.
However, Diffusion Maps still often creates unnecessary distortions,
and its performance varies widely in response to parameter value
changes. In this paper, we draw a previously unnoticed connec-
tion between DiffMaps and spring-motivated methods. We show that
DiffMaps has a physical interpretation: it finds the arrangement of
high-dimensional objects in low-dimensional space that minimizes
the elastic energy of a particular spring network. Within this in-
terpretation, we recognize the root cause of a variety of problems
that are commonly observed in the Diffusion Maps output, includ-
ing sensitivity to user-specified parameters, sensitivity to sampling
density, and distortion of boundaries. We then show how to exploit
the connection between Diffusion Map and spring criteria to create
a method that can be efficiently applied post hoc to alleviate these
commonly observed deficiencies in the Diffusion Maps output.

Index Terms— multidimensional signal processing, unsuper-
vised learning

1. INTRODUCTION

A theme often seen in signal processing is that our ability to process
data effectively is highly dependent on our ability to characterize its
underlying structure. For example, representing real world images
in terms of wavelets has led to superior methods for compression,
denoising, etc. New datasets, e.g. from genomics, neuroscience,
etc., often involve acquiring a very large volume of data (i.e. a high-
dimensional vector) as we vary a small number of variables in the
experiment. If there is a continuous mapping relating these high-
dimensional data points and underlying variables, we can effectively
model our data points as lying on a low-dimensional manifold in
high-dimensional space. In this paper, we examine methods that try
to discover this type of underlying structure in datasets as a precursor
to other types of processing.

To set up some notation, given points xi ∈ R
N , i = 1, . . . , M ,

N large, that are randomly sampled from a d-dimensional (d � N)
manifold M ⊂ R

N , the manifold learning problem is to find an em-
bedding f : M → R

d that best preserves the structure of M. Ide-
ally, we would like yi = f(xi) ∈ R

d to reflect an underlying param-
eterization of (e.g. a chart on) the manifold M. In practice, however,
one seeks embedded points yi, i = 1, . . . , M , that optimize some
objective function J(x1, . . . , xM ; y1, . . . , yM). Successful choices
for J will be discussed later.

Over the past several years, a large number of algorithms for
tackling this problem have emerged. These include ISOMAP
[1], Locally Linear Embedding (LLE) [2], Laplacian Eigenmaps
(LapEigs) [3], Hessian Eigenmaps [4], Local Tangent Space Align-
ment (LTSA) [5], Maximum Variance Unfolding (MVU) [6], Kernel
PCA [7], and Diffusion Maps [8]. The last and most recent of these
has provided a more general framework that unites many of the pre-
ceding algorithms including ISOMAP, LLE, LapEigs, and LTSA.
Diffusion Maps solves a relatively quick eigendecomposition prob-
lem in order to obtain its solution and generally produces a good
embedding (under favorable parameters). It, and its subcases, have

thus become some of the most popular manifold learning algorithms
to date.

However, while quite successful, the DiffMaps algorithm still
lacks several desirable properties for manifold learning. We shall
address the following two issues.
1: Unnecessary distortions, particularly of linear subspaces.
DiffMaps often introduces unnecessary distortions into its embed-
dings. This is seen most clearly in the case where the data points
{xi}M

i=1 lie in a linear subspace of R
N of dimension less than or

equal to d. Here, it is clearly possible to preserve all inter-point
relationships perfectly by simple linear projection; indeed, PCA
would produce such an embedding. However, DiffMaps generally
fails to do so. (See e.g. Fig. 1.)
2: Robustness to variation in user-specified parameters. DiffMaps
often produces dramatically different results for different values of
user-specified parameters (see e.g. the examples in [3, 8]). More-
over, there is currently no commonly accepted method for choosing
appropriate parameters, with individual researchers favoring par-
ticular heuristics. As a result, while DiffMaps is able to produce
good results under very careful selection of parameters, it is often
hit-or-miss in practice, depending largely on the skill, experience,
or patience of the individual researcher. In order to be more robust
and widely usable, a manifold learning algorithm must produce
good results for a much wider range of input parameters or, ideally,
eliminate the need for user-specified parameters entirely.

As part of a program to address these issues, we relate a dif-
ferent framework to DiffMaps in Section 2. In Section 2.1, we will
show how this alternate approach can be used to explain some of the
observed problems with DiffMaps. We then confirm this intuition
through side-by-side comparison of the DiffMaps criterion with a
closely related one. Finally, we show how these two criteria, one
easy to optimize but problematic in output, the other difficult to op-
timize but producing better results, can cross-inform each other: in
particular, we show how to efficiently tweak the output of DiffMaps
posthoc to alleviate undesirable effects.

2. SPRING INTERPRETATION OF DIFFUSION MAPS

We start by reviewing the operation of DiffMaps. DiffMaps, and
its previously mentioned subcases, use as embedding the eigenfunc-
tions of an operator A : L2(M) → L2(M) defined by (Af)(x) =∫
M k(x, y)f(y)dμ(y), where the kernel k varies according to the

algorithm. In particular, the heat kernel

kheat(x, y) = e−
‖x−y‖2

t (1)

(with user-specified parameter t) is commonly used. Equivalently,
they select f : M → R

d to optimize the functional J(f) =
‖A(f)‖2

L2(M) subject to the constraint that <fk, f l> = δij , where

fk is the k-th component of the function f and δij is 1 if i = j, 0
otherwise. On the set of samples {xi}M

i=1, this is choosing yi ∈ R
d,

i = 1, . . . , M , that minimize the objective

J(x1, . . . , xM ; y1, . . . , yM) =
∑
i,j

Wij(‖yi − yj‖)2 (2)

with Wij = k(xi, xj), subject to the constraint that the vectors
Y k, k = 1, . . . , d, formed from the k-th component of each yi, sat-
isfy, for a suitable inner product, <Y k, Y l> = δkl.

1565978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Intuitively, for k(a, b) monotonically decreasing with ‖a − b‖,
this objective creates an embedding that preserves the manifold
structure by strongly penalizing large distances between yi and yj

if xi and xj are close on the manifold. The result is an embedding
in which yi and yj are close if xi and xj are. The constraint is nec-
essary to prevent degenerate solutions such as collapsing all points
to a single location (a global minimizer of the objective function),
or collapsing the points into a lower dimensional space, which also
lowers the objective value. The constraint thus ensures that the
points “spread out” in all d dimensions.

As an alternative interpretation, consider a stretched ideal spring
with one endpoint fixed at y0 and one free endpoint y. This spring
exerts a restoring force F (y) = −k(y− y0)(‖y− y0‖− r) where k
is the spring constant and r its natural length. One can determine the
potential energy in such a stretched spring by calculating the work
done to stretch it. This is an integral of force exerted over distance
and results in the expression U(y) = 1

2
k(‖y − y0‖ − r)2. Now

suppose we have {yi}M
i=1 such that each pair yi and yj is connected

by a spring with constant kij and rest length rij . Then, the potential
energy of this spring network is

U = C
∑
i,j

kij(‖yi − yj‖ − rij)
2

(3)

Comparing this with the expression for the DiffMaps objective (2),
we see that DiffMaps is minimizing the potential energy of a network
of springs. In this network, points yi and yj are connected by a
spring with spring constant kij = Wij = k(xi, xj) with Wij the
DiffMaps weight, and rest length rij = 0, ∀i, j. Thus, for typical
k, stronger springs connect points that were originally close in the
high-dimensional space and weaker springs connect points that were
originally far apart.

Since F = ∇U , an arrangement of the points in which elas-
tic energy is minimized is also one in which the net force on each
point is zero, i.e. it is an equilibrium point of the system. Thus, we
could physically interpret DiffMaps as attaching a spring between
each pair of points in the high-dimensional space, using stronger
springs for closer points and weaker springs for farther points (to
reflect the greater importance we wish to assign to preserving local
distances), then forcibly compressing the entire network of springs
and points into a lower-dimensional space and allowing the points to
settle according to the forces placed upon them by the springs. Since
the springs have zero rest lengths, without additional constraint all
points will settle to a common point. However, the DiffMaps con-
straint prevents this, forcing the points to spread out in all directions.

2.1. Spring Intuition View of Diffusion Maps’ Problems
The spring interpretation gives insight into a number of observed
problems typically found in DiffMaps embeddings. For example,
consider a two-dimensional embedding of randomly sampled points
from the unit square in R

2. An ideal embedding should leave the
points where they are. However, if we attach zero-rest-length springs
to pairs of points that are close (as in Fig. 1) and allow the points to
equilibrate according to the forces placed upon them, the resulting
embedding clumps points in areas of greater spring density (i.e. of
slightly greater random sampling density) while opening holes in ar-
eas of lesser spring density [8, 9]. See Fig. 1. Hence, we already see
an explanation for distortions of linear subspaces. This matches the
previous observation that the DiffMaps result, in the absence of an
explicit sampling density correction, magnifies random variations in
sampling density. The effectiveness of the sampling density correc-
tion scheme proposed in [8] will be examined empirically later.

Moreover, the result is highly sensitive to the parameter t of the
kernel kheat. For example, a slightly lower value of t might allow

(a) (b) (c)

Fig. 1. Demonstration of undesirable effects in the embedding pro-
duced by zero-rest-length springs. (a) Random samples of original
unit square in R

2. (b) Original unit square with inter-point springs
drawn. (c) Diffusion maps embedding according to these springs.

more spring connections across areas of lower sampling density, pre-
venting holes in the embedding, while a slightly higher value might
produce even more holes. More generally, relying entirely on the rel-
ative strengths of the springs to preserve the geometry of the points
means that small variations in this delicate balance of spring weights
can produce dramatically different results. Finally, at boundaries and
corners, points only have neighbors in some directions and thus ex-
perience unbalanced forces. Hence, points along the boundaries are
compressed and corners rounded.

A common thread of the above observations is that the zero
rest length assumption is unnatural: we always pay a penalty in the
DiffMaps criterion when we move points farther apart, regardless
of how far apart they were in the original high-dimensional space.
In contrast, we never pay a direct penalty for compressing distances
between points. This criterion thus provides an incentive to unnec-
essarily distort distances.

3. EFFECT OF REST LENGTHS

Given the previous observations that the problems of Diffusion Maps
are due to the zero rest length assumption, we might wonder what
would occur if we instead took rij to be the original distance be-
tween xi and xj , resulting in the more natural objective function:

Jspring(y1, . . . , yM) =
∑
i,j

Wij (‖yi − yj‖ − ‖xi − xj‖)2

Interestingly, this criterion appears previously in the manifold learn-
ing literature, first in the early work of Chalmers and colleagues
[10] who used a spring framework, and an iterative minimization
approach based on computing forces and accelerations on individ-
ual points, to tackle the “graph layout” problem. It then appears in
the thesis of Lisha Chen [11], who noted that this objective has an
interpretation as a sort of localized multidimensional scaling.

In order to evaluate the impact of rest length, we directly com-
pare the result of DiffMaps(zero rest lengths) with that of the spring
criterion (same criterion with nonzero rest lenghts), both theoreti-
cally and experimentally. Details of the experimental optimization
procedure will follow in Section 4. The results confirm our intuition
that the zero rest lengths are to blame for the problems of DiffMaps.

3.1. Experimental Comparisons
We show embedding results for both criteria on two different
datasets. First, as an example that can be easily visualized and for
which we have clear ground truth, we consider the 2-dimensional
Swiss roll in R

3. We have randomly sampled 1,000 points from
a uniform distribution on this manifold. Then we compared the
embedding achieved by DiffMaps using the heat kernel, the “best”
choice of user-specified t (found by exhaustive search), and the cor-
rection for non-uniform sampling density described in [8], against
that achieved using the spring criterion with the same weights Wij .

Fig. 2 shows the embeddings. The generation embedding in
Fig. 2(b) represents ground truth. Fig. 3 gives a comparison of local

1566

(a) Swiss roll in R
3 (b) Generation embedding

(c) Diffusion maps embedding (d) Spring embedding

Fig. 2. Diffusion maps and spring embeddings of the Swiss roll

Fig. 3. Distance distortion histogram for Swiss roll embeddings.
Each bar gives the number of pairs i, j for which |‖yi −yj‖−‖xi −
xj‖| falls within the corresponding x-axis bin. (out of 5,186 pairs
with Wij > 0.01 and i 	= j.) For spring criterion, these distances
fall overwhelmingly into lower distortion ranges.

(a) (b)

Fig. 4. Comparison of Parameter Sensitivity. Embeddings of Diffu-
sion Maps (a) and spring criterion (b) for various t around the “best”
value of 2.2. We observe less variation in the spring results.

(a) (b)

Fig. 5. (a) Nine sample face images from the test dataset, illustrating
the three degrees of freedom of the dataset: (1) lighting angle, (2)
horizontal and (3) vertical angle of pose. (b) Histogram of embed-
ding distance distortions. Bars show the number of pairwise distance
distortions within each bin. (4, 534 pairs with Wij > 0.05).

distances distortion in each embedding and Fig. 4 illustrates the pa-
rameter sensitivity of the two algorithms. We analyze these results
below.

As a more complex example, we examine a standard dataset [1],
consisting of 698 64 × 64 images of a synthetic face. The faces
have two pose and one angle of illumination degrees of freedom.
Sample face images are shown in Fig. 5(a). Since this manifold is
3-dimensional in 4,096-dimensional space, visual comparison with
ground truth is impossible. The distortion bar chart in Fig. 5(b) sum-
marizes the performance gained using both the original DiffMaps
and spring criteria.

3.2. Observations from Comparison of these Criteria

Preservation of Local Inter-point Distances. Under correct choice
of nonzero rest lengths as ‖xi − xj‖, preservation of all local in-
terpoint distances is guaranteed whenever possible, regardless of
parameter choice. If an embedding exists such that ‖yi − yj‖ =
‖xi − xj‖ for all i, j with Wij > 0 (i.e., all local pairwise distances
are perfectly preserved), then Jspring = 0 for this embedding, and it
is a global minimizer of Jspring, regardless of the particular values
taken by the nonzero Wij . However, if ‖yi − yj‖ 	= ‖xi − xj‖
for any i, j with Wij > 0, then Jspring > 0 for this embedding.
A global minimizer of Jspring thus preserves all local pairwise dis-
tances (i.e. all that are assigned nonzero weight) if such a local-
distance-preserving embedding exists. As noted previously, the zero
rest length DiffMaps criterion rarely preserves all these distances.

Need for Additional Constraints. Since the DiffMaps criterion is
optimized by collapsing all the points onto a single location (and
improved by collapsing the points onto a lower-dimensional sub-
space), DiffMaps is forced to impose the additional constraint on
the yis to keep this from happening. Unfortunately, this constraint
alone is enough to introduce unnecessary distortions, since points
randomly sampled from a uniform distribution on a subset of a lin-
ear hyperplane will satisfy the DiffMaps constraint with probability
zero. Also, it prevents the algorithm from discovering that the data
can be effectively embedded in a space of dimension less than d.
By contrast, Jspring suffers when the points are collapsed onto each
other, so no such inconvenient constraints are needed.

Parameter Sensitivity. We noted above that a perfect embedding of
the points, if it exists, will minimize Jspring regardless of the values
of the weights Wij , or, more explicitly, regardless of the parame-
ter t’s value. More generally, by incorporating a direct incentive to
preserve local distances rather than indirectly counting on a delicate
balance of the weights Wij to do all the work, Jspring becomes more
robust to small changes in the parameters that determine the weights.
See Fig. 4.

Distortion of Boundaries. DiffMaps embeddings often show dis-
tortion of boundaries (especially corners) of manifolds. As noted
previously, the spring interpretation predicts this. By contrast, in
Section 3.1, we see that the criterion Jspring produces little distor-
tion of boundaries and corners.

Robustness to Variations in Sampling Density. As observed,
DiffMaps typically suffers in performance when the xi have been
sampled unevenly from the manifold and tends to magnify these
variations. Such deviations from uniform density occur almost
surely even in the case of random sampling from a uniform dis-
tribution on the manifold. As a posthoc fix, DiffMaps sometimes
applies a correction to the weights Wij , normalizing them by an
estimate of the local sampling density [8]. In Section 3.1, we see it
is more effective to incorporate the desired inter-point distances into
the criterion directly (Jspring), rather than counting on the weights
to indirectly influence them (Jdiff).

1567

Ease of Optimization While using nonzero rest lengths has a num-
ber of clear advantages, it also results in nonconvexity of the crite-
rion. To see how this arises, examine the simple example of two
points x1, x2, originally a distance d0 = ‖x1−x2‖ apart, being em-
bedded into R

1. Fix y1 at the origin and consider how Jdiff(y1, y2)
and Jspring(y1, y2) vary with y2. Jdiff is a simple quadratic and
therefore convex, but Jspring is non-convex around the origin be-
cause the objective must necessarily increase as y2 approaches y1

in order to penalize solutions for which ‖y1 − y2‖ < d0. Hence,
non-convexity is a necessary effect of nonzero rest lengths.

4. COMBINING STRENGTHS OF THE TWO CRITERIA
We conclude from the observations above that nonzero rest lengths
produce superior results with respect to a variety of criteria at the
expense of non-convexity. However, given the connection between
the easily computed DiffMaps solution and the more effective, but
nonconvex spring criterion, one might ask if this connection can be
used to produce a more advantageous method.

Defining the matrix inner product <·, ·>W as <A, B>W =∑
ij WijAijBij , with ‖ · ‖W the corresponding norm, we note that

min Jspring = min ‖D(X) − D(Y)‖2
W

= min ‖D(Y)‖2
W − 2<D(X), D(Y)>W

= min Jdiff(y1, . . . , yM) − 2<D(X), D(Y)>W

where D(X)ij = ‖xi − xj‖, D(Y)ij = ‖yi − yj‖.
We notice then that if the new inner product term is large for the

DiffMaps embedding, i.e. if the pairwise distances in the DiffMaps
solution correlate well with those in the original high-dimensional
space, then the DiffMaps solution will already be close to the spring
criterion’s global minimizer. Thus, we can exploit this connection
between the globally optimizable DiffMaps criterion and the spring
one, by employing gradient descent from the DiffMaps solution to
quickly optimize the spring one. We note that this gradient is:

∂

∂(yk)l
Jspring=4

∑
j �=k

Wkj

(‖yk − yj‖ − ‖xk − xj‖
‖yk − yj‖

)
((yk)l − (yj)l)

Indeed, this gradient descent strategy successfully alleviates prob-
lems in the DiffMaps output as demonstrated by the spring results
obtained this way in Sec. 3.1.

4.1. Preventing Folding in the Embedding
As a final note, we will discuss one additional quality that we would
like in an embedding that has not received much attention thus far.
Consider a manifold formed by folding a sheet of paper along its
midline and then slightly opening the fold to form the shape of a
partially open file folder. The fold line naturally separates the mani-
fold into two halves. The local pairwise distances between points on
the manifold fall into two categories: (1) those lying entirely within
one planar half of the manifold and (2) a smaller set of local pair-
wise distances that span the fold connecting the two planar sections
of the manifold. Now, consider two candidate embeddings of this
manifold into the two-dimensional plane: (a) we fold the manifold
bringing the two halves together, and (b) we unfold the manifold and
lay it flat. Both candidate embeddings preserve the local distances
in category (1) perfectly. However, for distances in category (2):
embedding (a) slightly compresses the local distances whereas em-
bedding (b) greatly expands them. From the perspective of preserv-
ing local distances, embedding (a) is the better embedding, although
we might in fact much prefer embedding (b), e.g. if our goal is an
embedding that reflects the underlying parameterization of the man-
ifold. DiffMaps is subject to similar concerns, although it is worth
noting that the DiffMaps constraint creates an incentive to spread the
points out, possibly at the cost of preserving local distances.

We can address the situation in which we would prefer embed-
ding (b) by noting that a fold necessarily implies moving points that
are far apart in the high-dimensional space closer together in the
embedding. However, since geodesic distance is always at least
as great as Euclidean distance, one should not have to compress
distances in order to recover an embedding that reflects the under-
lying parameterization of the manifold. In this sense, compress-
ing distances is less desirable than expanding them. This suggests
that we impose an asymmetrical penalty on the distortion of dis-
tance, penalizing distance compression more than expansion. We
incorporate“one-way” springs: springs that exert force only when
compressed. The result is the same objective and gradient expres-
sions but with the old weight Wij replaced with the new weight
Wij = Wij + VijI(‖xi − xj‖ − ‖yi − yj‖). I(x) is the indicator
function (1 when x > 0, 0 otherwise).

5. CONCLUSIONS
We have explored an alternate, more physical, interpretation of the
DiffMaps criterion, which gives additional insight into a number of
observed problems with DiffMaps embeddings. Through this in-
terpretation, we have been able to trace these deficiencies back to
the zero rest length assumption and have demonstrated that fixing
this alleviates the observed problems: perfectly preserving all local
inter-point distances exactly when possible to do so and eliminating
unnecessary and awkward constraints on the solution. However, fix-
ing these problems comes at the cost of a nonconvex criterion; we
have demonstrated that this a natural effect of penalizing distance
compression. We have then shown how we can efficiently find min-
ima of this alternate criterion by exploiting its relationship with the
original DiffMaps solution and presented experimental results which
show that minimizing the alternate criterion using DiffMaps for ini-
tialization, produces results that better preserve local distances, are
more robust to variations in sampling density, better preserve bound-
aries, and are less sensitive to a user’s choice of parameters.

6. REFERENCES

[1] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 260,
pp. 2319–23, 2000.

[2] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, pp. 2323–2326, Dec. 2000.

[3] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[4] D. L. Donoho and C. Grimes, “Hessian eigenmaps: New locally linear
embedding techniques for high-dimensional data,” PNAS, vol. 100, pp.
5591–6, 2003.

[5] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension-
ality reduction via tangent space alignment,” SIAM Jour. on Sci. Com-
puting, vol. 26, no. 1, pp. 313–38, 2005.

[6] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image
manifolds by semidefinite programming,” Int. J. Comput. Vision, vol.
70, no. 1, pp. 77–90, 2006.

[7] B. Scholkopf, A. Smola, and K. Muller, “Nonlinear component analysis
as a kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5,
pp. 1299–1319, 1996.

[8] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and Compu-
tational Harmonic Analysis, vol. 21, pp. 5–30, 2006.

[9] S. Lafon, Diffusion Maps and Geometric Harmonics, PhD Thesis Yale
University, 2004.

[10] A. Morrison, G. Ross, and M. Chalmers, “Fast multidimensional scal-
ing through sampling, springs and interpolation,” Information Visual-
ization, vol. 2, no. 1, pp. 68–77, 2003.

[11] L. Chen, Local Multidimensional Scaling for Nonlinear Dimension
Reduction, Graph Layout, and Proximity Analysis, PhD Thesis, Uni-
versity of Pennsylvania, 2006.

1568

