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ABSTRACT

We propose a technique to separate audio sources from their ane-
choic mixtures with long delay in an underdetermined setting (i.e.,
the number of audio sensors is smaller than that of sources). It con-
sists of two stages: 1) to estimate anechoic mixing parameters of
attenuation and arrival delay and 2) to recover original audio sources
based on estimated mixing parameters. When delay is longer than
one sample, previous algorithms perform poorly. To address this
shortcoming, we estimate the maximum delay and use it to find a
proper frequency range that produces no phase ambiguity. Then,
we determine mixing parameters with time-frequency points in this
range. Finally, mathematical tools are used to solve the underde-
termined linear system to recover original audio sources. The ef-
fectiveness of the proposed technique on various mixing scenarios
with noisy observation of mixtures and different types of sounds is
demonstrated by experimental results.

Index Terms— Audio source separation, underdetermined mix-
ing, delay estimation, sparse representation, multichannel audio.

1. INTRODUCTION

Audio source separation, which aims to estimate the original sources
given acoustic mixtures of those sources, is one of the emerging re-
search topics in recent years due to its many potential applications;
e.g., human voice extraction in noisy background with music and/or
environmental sounds. In this work, we examine the underdeter-
mined anechoic audio source separation problem, where the number
of sources is greater than the number of mixtures, from noisy obser-
vations of anechoic mixtures of various sounds.

Recently, under the source sparsity assumption in a transform
domain, the Sparse Component Analysis (SCA) was proposed to
solve the audio source separation problem. The SCA-based method
exploits clustering in the scatter plot and uses �1-norm optimization
to solve the underdetermined source separation problem with lim-
ited success. Another approach was developed based on the ratios of
time-frequency (TF) transforms of observations, which leads to the
DUET-type methods [1,2]. One essential requirement of these meth-
ods is that sources must be strongly sparse in the analysis domain.
However, it is difficult to estimate the mixing matrix accurately with
clustering algorithms when the sources are not sufficiently sparse.
Moreover, the sparsity condition can be violated in reality, e.g., noise
and the high degree of overlapping of sources.

Another shortcoming of the DUET-type methods is that they
cannot yield an accurate mixing matrix if the arrival delay between
multiple sources is longer than one sample due to the phase unwrap-
ping ambiguity. Some solutions were proposed in [3] to solve the

E-mails: namgookc@usc.edu and cckuo@sipi.usc.edu

problem by finding the TF region where only one source is dominant.
However, they still need the assumption of strong source sparsity (or
low degree of source overlapping in the TF domain).

It is desirable to develop an approach that does not rely on the
assumption of source sparsity and noise-free mixing. For example,
we may consider mixtures of music and/or environmental sounds
(rather than only speech signals) that have a wide range of spec-
tral and temporal characteristics and overlapping of source signals
in the TF domain is strong. Here, we propose a new method to esti-
mate the anechoic mixing model for underdetermined audio source
separation. Being inspired by human audition in interaural time dif-
ference, we estimate the maximum delay and use it to find a proper
frequency range that produces no phase ambiguity. Using TF points
in this range, we can identify a parameter space of attenuation ratios
and time delay and determine mixing parameters accordingly. Then,
several mathematical tools are used to solve the underdetermined
linear system so as to separate original audio sources. Experimental
results demonstrate the effectiveness of the proposed technique on
various mixing scenarios using noisy observation of mixtures and
different types of sounds.

The rest of this paper is organized as follows. The problem of
underdetermined audio source separation from anechoic mixtures is
formulated in Sec. 2. The proposed solution is described in Sec. 3.
Experimental results are presented and discussed in Sec. 4. Finally,
concluding remarks and future research work are given in Sec. 5.

2. PROBLEM FORMULATION

Consider an anechoic mixing model with N audio sources, denoted
by sj(t), 1 ≤ j ≤ N , and M audio sensors (or microphones) that
yield linearly mixed signals. This mixing process can be described
by

xi(t) =
N∑

j=1

aijsj(t − δij), i = 1, · · · , M (1)

where aij and δij are the scalar attenuation coefficient and the time
delay parameter, respectively, for the path from the jth source to the
ith microphone. Without loss of generality, we set δ1j = 0 and

scale sources with
∑M

i=1 |aij |2 = 1, for j = 1, · · · , N . In this
work, we assume M < N , i.e., the mixing is underdetermined and
the number of sources N is known a priori. The goal is to recover
unknown source signals from observed mixtures only.

Instead of solving the problem in the time domain, we apply
the time-frequency transformation to mixture signals. By using the
short-time Fourier transform (STFT) with a fixed window function,
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we can re-write the mixing model in Eq. (1) as

x̂[k, l] =

⎡⎢⎢⎢⎣
a11 · · · a1N

a21e
−jω0lδ21 · · · a2Ne−jω0lδ2N

...
. . .

...

aM1e
−jω0lδM1 · · · aMNe−jω0lδMN

⎤⎥⎥⎥⎦ ŝ[k, l], (2)

where x̂ = [x̂1, · · · , x̂M ]T and ŝ = [ŝ1, · · · , ŝN ]T are the STFT
of mixtures and sources, respectively. The use of STFT has several
advantages. First, the convolutive mixtures in (1) reduces to instan-
taneous ones in each TF point [k, l]. Second, we can exploit the
sparsity of source components, which plays a key role in our work.
Generally, sources are not sparse in the time domain.

3. PROPOSED SOLUTION

To solve the problem formulated in Eq. (1), we employ a two-stage
approach for underdetermined anechoic audio source separation.
First, we apply the short-time Fourier transform (STFT) to mix-
tures and estimate mixing parameters, aij and δij , from mixtures.
Then, we recover sources based on the estimated parameters and
use the inverse STFT to reconstruct time-domain signals. These two
modules are described in detail in the following two subsections.

3.1. Estimation of Mixing Parameters

In this subsection, we propose a parameter estimation technique that
is able to efficiently extract good features with no phase ambiguity
under the assumption of source sparsity. The algorithm is motivated
by human audition for source localization. At low frequencies, since
sound’s wavelength is much longer than the human head diameter,
the phase difference between signals received by two ears can be es-
timated with no ambiguity. In contrast, there can be several cycles of
shift in high frequencies, which results in phase ambiguity of inter-
aural time difference. Thus, our goal is to find the frequency range
that produces no phase ambiguity, and then use TF points located in
this range to construct the feature space for parameter estimation.

For example, to avoid phase indeterminacy in Eq. (2) with
stereophonic observations (i.e., M = 2), we should choose good TF
points [k, l] that meet the following criterion:

|ω0lδ2j | < π, (3)

where ω0 = 2π/L and L is the length of the analysis window. Let
δjmax = maxj |δ2j |, where δjmax is the largest delay in the mixing
system. Clearly, condition (3) is guaranteed for all j if ω0lδjmax <
π. This is equivalent to the condition

δjmax <
π

ω0l
=

L/2

l
, l = 1, · · · ,

L

2
. (4)

Thus, we can determine the frequency range that satisfies the phase
determinacy condition based on the condition in (4).

To estimate the maximum time delay between multiple channels,
we use the GCC-PHAT method proposed in [4] to compute the in-
verse Fourier transform of the weighted cross-power spectrum of the
mixture signals. It is widely acknowledged that GCC-PHAT is more
immune to reverberation and able to provide consistent performance
when the characteristics of the source signal change over time. With
GCC-PHAT, the time delay estimate can be obtained mathematically
as

δ̂jmax = arg max
m

ΨPHAT[m], (5)

where
ΨPHAT[m] = FT

−1{Sx/|Sx|
}

and Sx is the cross-power spectrum of the mixture signals.
Next, using TF points that satisfy the phase determinacy condi-

tion, we can define a parameter space of the attenuation ratio and
time delay. Suppose that only a particular source j is significantly
different from zero at TF point [k, l]. Then, the mixing model in
Eq. (2) becomes[

x̂1

x̂2

]
=

[
a1j

a2j e−jω0lδ2j

]
ŝj .

Thus, at TF point [k, l], the attenuation ratio xat and time delay xd

can be written as

xat =
a2j

a1j
=

∣∣∣∣∣ x̂2[k, l]

x̂1[k, l]

∣∣∣∣∣ and xd = − 1

ω0l
∠ x̂2[k, l]

x̂1[k, l]
. (6)

To determine mixing parameters, we rely on features computed by
Eq. (6) and construct a smoothed histogram in the two-dimensional
(2D) parameter space (xat,xd). After that, we determine the mixing
parameters by locating peaks in the 2D histogram.

(a) (b)

Fig. 1. Comparison of histograms defined on parameter space
(xat,xd), where symbol “x” marks local peaks used to estimate
mixing parameters: (a) the full-frequency method and (b) the partial-
frequency method.

We compare histograms from a four-speech-source synthetic
mixing example in Fig. 1, which are computed by two methods (i.e.
the full-frequency and partial-frequency methods), where the maxi-
mum time delay is larger than one sample (δjmax = 7.2 samples in
this example). The use of the whole frequency range yields spurious
peaks and, consequently, incorrect estimation of mixing parame-
ters as shown in Fig. 1 (a). These spurious points can however be
successfully eliminated as shown in Fig. 1 (b) using TF points in a
partial frequency range that meet the condition specified by Eq. (4).
Each peak location labeled by symbol “x” corresponds to one pair

of mixing parameters. Since δ̂jmax was computed as 7 samples by
GCC-PHAT in this example, the frequency interval (0, 1120] Hz
was used to confine the parameter space. In contrast, if δjmax is
less than one sample, both partial- and full-frequency methods can
estimate the mixing parameters successfully.

It is worthwhile to emphasize our contribution along this line.
The original goal of Eq. (5) is not to estimate time delay parameters
δij between multiple audio sources, but the maximum time delay
δjmax among them. Here, we obtain good results for time delay es-
timation based on the restriction on the frequency range of our inter-
est introduced by (4). In contrast, the traditinal method, which uses
the whole frequency range, yields spurious points in the parameter
space due to phase ambiguities.
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3.2. Estimation of Audio Sources

Based on estimated mixing parameters, the mixing model in Eq. (2)
can be written as

x̂[k, l] = Â[l] ŝ[k, l], (7)

where Â[l] ∈ C
M×N is the estimated mixing matrix. Our goal is to

find estimates ŝ of the original sources. However, unmixed signals
cannot be directly obtained since the mixing matrix given in Eq. (7)
is underdetermined. That is, at each TF point, the mixing model has
more unknowns (N ) than constraints (M ). Several mathematical
techniques have been proposed to solve the underdetermined system
of linear equations. Among them, the sparsity of the source vector
has been widely and successfully exploited. For example, the mini-
mum norm solution with �1-norm or �p-norm criterion (p < 1).

To find the sparsest ŝ[k, l] at each TF point, Eq. (7) can be for-
mulated as the following optimization problem:

min
ŝ

‖ŝ‖p subject to Â ŝ = x̂, (8)

where 0 < p ≤ 1. It has been known in [2] that the N -dimensional
vector ŝ that solves Eq. (8) contains at least N − M zeros if the

columns of Â are normalized. Based on this result, it is possible to
employ a combinatorial algorithm (CA) to solve Eq. (8). That is, one
can find set A that contains all M × M invertible submatrices from
Â and chooses the one that offers a solution with the minimum norm
as

min ‖B−1 x̂‖p, B ∈ A, (9)

where BM×M = [ai1, · · · ,aiM ] and the possible number of B is
equal to CM

N . To solve the problem in Eq. (9), Winter et al. [5]
employed the �1-norm constraint while Saab et al. [2] showed ex-
perimentally that the separation performance can be improved when
one uses �p-norm with p < 1.

In this work, we also employ FOCUSS algorithm [6] which is
not based on the combinatorial optimization as described above, but
on iteratively re-weighted norm minimization of the source vector.
It is observed that the FOCUSS algorithm admits a sparser solution
(i.e., more than N − M components in vector ŝ can be zero).

4. EXPERIMENTAL RESULTS

The performance of the proposed solution technique is evaluated
in this section. To measure the quality of reconstructed sounds
with respect to the original one, the performance metrics suggested
in [7] were used, including the source-to-distortion-ratio (SDR), the
source-to-interference-ratio (SIR), and the source-to-artifact-ratio
(SAR). A higher performance measure indicates a better reconstruc-
tion with less distortion.

Test signals were chosen from several excerpts of audio sounds:
male/female speech utterances, recordings of musical instruments
and environmental sounds. All sounds used in the experiments were
downsampled to 16,000 Hz and had a length of 10 seconds. The
frame size L of the Hanning window was set to 512 samples and
the shifting interval of the frame was 256. We examined underdeter-
mined mixtures with N = 3 and M = 2.

Stereo recordings of several sources were simulated by convolv-
ing the source signals with room impulse response using the Room-
sim toolbox [8]. The positions of the omnidirectional microphones
and loudspeakers are illustrated in Fig. 2. In the configuration, the
maximum time delay between microphones is larger than one sam-
ple.

Fig. 2. The configuration of loudspeakers and microphones in a
room, where recordings were simulated with an absorption coeffi-
cient of 0.9 for room’s surface.

4.1. Estimation of Mixing Parameters

We consider two settings in the generation of simulated room record-
ing data:

• Case A: mixtures of three speech utterances;

• Case B: mixtures of one speech utterance and two musical
sounds (flute and acoustic guitar).

In Fig. 3, we present smoothed histograms in the parameter space
in these two settings. Figs. 3 (a) and (b) are obtained from Case A
while Figs. 3 (c) and (d) are obtained from Case B.

(a) (b)

(c) (d)

Fig. 3. Smoothed histograms for the mixtures of three sources
computed from simulated room recordings: (a) Case A with full-
frequency data, (b) Case A with partial-frequency data, (c) Case B
with full-frequency data, and (d) Case B with partial-frequency data.

In Figs. 3 (a) and (c), the conventional approach proposed in [1,
2] was employed, where data in the whole frequency range were
used in parameter estimation. The approach yields spurious points
and peaks in the parameter space. In contrast, we used the partial fre-
quency range that meets the condition in Eq. (4) to construct good
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features. The results are plotted in Figs. 3 (b) and (d) for compari-
son. It is clear that peaks of histograms in Figs. 3 (b) and (d) can be
easily located. It is observed that poorly estimated mixing param-
eters degrade the audio source separation performance significantly
in the source recovery stage.

4.2. Reconstruction of Audio Sources

We conducted audio source separation experiments with simulated
room recordings of several sources based on the room configuration
in Fig. 2. Table 1 shows the separation performance in terms of SDR,
SIR, and SAR, where each performance metric is computed based on
the average for all extracted signals. The combinatorial algorithm
(CA) with p = 0.4 yields the best SDR and SIR performance. To
understand the sensitivity of paramter p, we plot the SDR and SIR
performance curves as a function of p in Fig. 4. We see that any
choice of 0.1 ≤ p ≤ 0.9 provides equally good performance.

For comparison, the conventional approach proposed in [1, 2]
fails to separate source signals due to their incorrect estimation
of mixing parameters when δjmax ≥ 1; for example, –3.79, –
3.37 and –4.39 dB were obtained on SDRs of CA (p = 1), CA
(p = 0.4), and FOCUSS (p = 0.4), respectively, for the example of
speech+piano+guitar mixtures in the table.

Table 1. Source separation example with stereo mixtures of three
sources with δjmax ≥ 1.

Mixtures speech + piano + guitar speech + cello + train

SDR SIR SAR SDR SIR SAR

CAp=1.0 5.05 10.68 8.39 2.30 7.25 6.83
CAp=0.4 6.08 13.24 8.13 4.73 11.00 7.53

FOCUSSp=0.4 3.55 12.40 4.54 0.82 2.95 5.74

Finally, we tested our algorithm with noisy observation of ane-
choic recordings to understand the effect of noise on the sparsity
assumption. In the past, source separation methods were proposed
under the assumption that the effect of noise on the mixtures is neg-
ligible, e.g., [1, 2, 5] . However, noise and/or overlapping sources
do affect the accuracy of mixing model recovery as well as audio
source estimation. Fig. 5 shows the separation performance in terms
of SDRs as a function of the additive white Gaussian noise level (i.e.,
the Source-to-Noise-Ratio). The performance degrades as the SNR
value decreases although the proposed algorithm estimated mixing
parameters successfully. Note that FOCUSS yields slightly robust
performance for SDRs since it can have a sparser solution than the
combinatorial algorithms. For results of FOCUSS, our own listening
tests indicate that there is little interference from sources other than
extracted one, but there exist some artificial distortion, known as the
“musical noise” artifact, due to forced zeros in the FT points.

5. CONCLUSION AND FUTURE WORK

We examined main assumptions and limitations of SCA-based meth-
ods for underdetermined anechoic audio source separation and pre-
sented a new technique to overcome their limitations. The proposed
technique provides good performance under noisy observations with
different source types, mixing conditions and longer delay (with the
delay time larger than one sample). In the future, we would like
to extend the proposed framework to an array of microphones and
use the beamforming technique to improve the performance further-
more.

(a) (b)

Fig. 4. The averaged values of (a) SDR and (b) SIR as a function of
p in CA with three estimated speech sources where δjmax ≥ 1.

(a) (b)

Fig. 5. The averaged values of SDR as a function of SNR with three
estimated sources where δjmax ≥ 1: (a) mixtures of speech, piano
and guitar, and (b) mixtures of guitar, piano and cello.
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