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ABSTRACT

Nonnegative matrix tri-factorization (NMTF) is a 3-factor decom-
position of a nonnegative data matrix, X ≈ USV

�, where factor
matrices,U , S, and V , are restricted to be nonnegative as well. Mo-
tivated by the aspect model used for dyadic data analysis as well as
in probabilistic latent semantic analysis (PLSA), we present a prob-
abilistic model with two dependent latent variables for NMTF, re-
ferred to as probabilistic matrix tri-factorization (PMTF). Each la-
tent variable in the model is associated with the cluster variable for
the corresponding object in the dyad, leading the model suited to co-
clustering. We develop an EM algorithm to learn the PMTF model,
showing its equivalence to multiplicative updates derived by an al-
gebraic approach. We demonstrate the useful behavior of PMTF in
a task of document clustering. Moreover, we incorporate the like-
lihood in the PMTF model into existing information criteria so that
the number of clusters can be detected, while the algebraic NMTF
cannot.

Index Terms— Co-clustering, document clustering, probabilis-
tic latent semantic indexing, nonnegative matrix factorization

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [11] is a method for mul-
tivariate analysis of nonnegative data, seeking a 2-factor decompo-
sition of a nonnegative data matrix, X ≈ UV

�, where two factor
matrices U and V are restricted to be nonnegative. NMF has been
successfully applied to a variety of applications, including face de-
tection and recognition, audio and speech processing, text mining,
biomedical image analysis, bioinformatics, and so on.

One of prominent applications of NMF, which is of our interest,
is document clustering that plays an important role in dyadic data
analysis [16, 15]. Dyadic data refers to a domain with two finite sets
of objects in which observations are made for pairs with one element
from either set [8]. A term-document matrix contains co-occurrence
frequencies of word-document pairs. When NMF is applied to a
term-document matrix, the matrix is decomposed into a product of
two factor matrices, where one corresponds to cluster centers and the
other is associated with cluster indicator variables [16]. Orthogonal-
ity constraints were imposed on factor matrices in the decomposi-
tion [5, 2], where a clear link between k-means clustering and NMF
is made in such a case. Multiplicative updates for orthogonal NMF
were developed, exploiting directly gradient information on Stiefel
manifolds [2, 17].

Nonnegative matrix tri-factorization (NMTF) is a 3-factor de-
composition, X ≈ USV

�, with nonnegative constraints imposed
on factor matrices U , S, and V . Matrix tri-factorization was stud-
ied for co-clustering [4] which aims at the simultaneous clustering
of rows and columns of a term-document matrix. Block value de-
composition (BVD) seeks an approximation of a term-document ma-

trix as a product of row-coefficient matrix, block value matrix, and
column-coefficient matrix [13]. Nonnegativity constraints are easily
incorporated into BVD. Orthogonality constraints on factor matrices
were also considered in nonnegative matrix tri-factorization (NMTF)
[5], where the co-clustering was shown to improve the accuracy of
document clustering.

The aspect model [8], which is a statistical latent variable model,
defines a proper generative model for factor analysis of dyadic data.
Probabilistic latent semantic analysis (PLSA) makes use of the as-
pect model for document clustering. An interesting link between
PLSA and NMF was revealed in [6], where the multiplicative updat-
ing algorithm for NMF with KL-divergence considered was shown
to be equivalent to the EM algorithm for PLSA. In this paper, we
present a probabilistic model for NMTF, referred to as probabilis-
tic matrix tri-factorization (PMTF) and develop an EM algorithm to
learn the PMTF model. As in [6], we show a link between an alge-
braic approach to NMTF and our probabilistic model. Experiments
on several document datasets confirm its comparable performance
in a task of document clustering. In addition, we demonstrate that
PMTF is able to detect a proper number of clusters, incorporating the
likelihood into Akaike information criterion, while algebraic NMTF
cannot.

2. PLSA AND NMF

We present a quick review of PLSA [7] where the aspect model is
used to model co-occurrence data, as well as a link between PLSA
and NMF [6]. Throughout this paper, we consider a term-document
matrixX ∈ R

M×N
+ , where observationsXij are co-occurrence fre-

quencies of dyads (wi, dj) (i.e., the significance of term (word) wi

in document dj) for two sets of objects, W = {w1, . . . , wM} and
D = {d1, . . . , dN}.

PLSA makes use of a statistical latent class model (known as
aspect model), for factor analysis of dyadic data. The generative
model used in PLSA is given by

p(wi, dj) =
∑

z

p(wi|z)p(dj |z)p(z), (1)

where z ∈ {1, . . . , K} is the latent class variable. Given the latent
variable z, random variables w and d are conditionally independent.
The complete-data likelihood is given by

p(X , y) =
∏

i

∏
j

p(wi, dj , z)Cij , (2)

whereCij are empirical counts for dyads (wi, dj) inX = {(wi, dj)}.
EM algorithm to learn the model (1) was developed in [7], where
E-step is given by

p(z|wi, dj) =
p(z)p(wi|z)p(dj |z)∑

z′ p(z′)p(wi|z′)p(dj |z′)
, (3)
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and M-step re-estimates parameters

p(wi|z) =

∑
j
Cijp(z|wi, dj)∑

i

∑
j
Cijp(z|wi, dj)

, (4)

p(dj |z) =

∑
i
Cijp(z|wi, dj)∑

i

∑
j
Cijp(z|wi, dj)

, (5)

p(z) =

∑
i

∑
j
Cijp(z|wi, dj)∑
i

∑
j
Cij

. (6)

On the other hand, NMF seeks a 2-factor decomposition of X

that is of the form

X ≈ UV
�, (7)

where factor matrices, U ∈ R
M×K
+ and V ∈ R

N×K
+ , are re-

stricted to be nonnegative. Considering KL-divergence between X

andUV
�, as a discrepancy measure, multiplicative updates [12] for

factor matrices U and V are given by

Uij ← Uij

∑
k
(Xij/[UV

�]ik)Vkj∑
k

Vkj

, (8)

Vij ← Vij

∑
k
(Xki/[UV

�]ki)Ukj∑
k

Ukj

. (9)

Without loss of generality, assume that
∑

i

∑
j
Xij = 1. We de-

fine scaling matricesDU ≡ diag
(
1
�

U
)
andDV ≡ diag

(
1
�

V
)
,

where 1 = [1, . . . , 1]�. Then the factorization (7) can be rewritten
as

X = (UD
−1
U )(DUDV )(V D

−1
V )�. (10)

Comparing (10) with the factorization (1), one can see that entries
of (UD

−1
U ) correspond to p(wi|z), elements of (V D

−1
V ) are asso-

ciated with p(dj |z), andD ≡ DUDV corresponds to cluster prior
p(z). It was shown in [6] that the EM algorithm for PLSA is equiv-
alent to multiplicative updates for NMF with KL-divergence error
measure.

3. NONNEGATIVE MATRIX TRI-FACTORIZATION

Nonnegative matrix tri-factorization (NMTF) is a 3-factor decompo-
sition of a nonnegative dyadic data matrix X ∈ R

M×N
+ that takes

the form

X ≈ USV
�, (11)

where U ∈ R
M×K
+ , S ∈ R

K×R
+ , and V ∈ R

R×N
+ are constrained

to be nonnegative matrices.
Recently matrix tri-factorization draws extensive attention due

to its usefulness in co-clustering dyadic data such as co-occurrence
matrix, rating matrix, and proximity matrix. Block value decom-
position [13] exploits the latent block structure captured by S for
co-clustering. The factorization (11) with orthogonality constraints
( U�

U = I and V
�

V = I ) is also developed [5].
We consider KL-divergence of the model from the data as an

error measure,

J =

M∑
i=1

N∑
j=1

{
Xij log

Xij

[USV
�]ij

− Xij + [USV
�]ij

}
, (12)

where [USV
�]ij =

∑
a

∑
b
UiaSabVjb. Derivatives with respect

to each factor matrix are given by

∂J

∂Uij

=
N∑

a=1

{
[V S

�]aj −
Xia

[USV
�]ia

[V S
�]aj

}
,

∂J

∂Vij

=
M∑

a=1

{
[US]aj −

Xai

[USV
�]ai

[US]aj

}
,

∂J

∂Sij

=
M∑

a=1

N∑
b=1

{
UaiVbj −

Xab

[USV
�]ab

UaiVbj

}
.

Applying the techniques [3], one can easily derive multiplicative up-
dates that are of the form:

Uij ← Uij

∑N

a=1(Xia/[USV
�]ia)[V S

�]aj∑N

a=1[V S
�]aj

, (13)

Vij ← Vij

∑M

a=1(Xai/[USV
�]ai)[US]aj∑N

a=1[US]aj

, (14)

Sij ← Sij

∑M

a=1

∑N

b=1(Xab/[USV
�]ab)UaiVbj∑M

a=1

∑N

b=1 UaiVbj

. (15)

4. PROBABILISTIC MATRIX TRI-FACTORIZATION

4.1. Probabilistic model

We consider a term-document matrix but our model and algorithm
work for other dyadic matrices as well. Introducing two latent vari-
ables, yl and zk, which are associated with cluster variables for terms
(words) and documents, respectively. The term-document joint dis-
tribution is factorized as

p(wi, dj) =
R∑

l=1

K∑
k=1

p(wi, dj |yl, zk)p(yl, zk)

=

R∑
l=1

K∑
k=1

p(wi|yl)p(dj |zk)p(yl, zk), (16)

where p(yl, zk) is the joint prior probability for term cluster yl and
document cluster zk. Relating (16) to the 3-factor decomposition
(11), marginal distributions p(wi|yl) and p(dj |zk) are associated
with UD

−1
U and V D

−1
V , respectively. Then by the following fac-

torization

X = (UD
−1
U )(DUSDV )(V D

−1
V )�,

we can see that the joint probability p(yl, zk) is represented by each
element ofDUSDV .

To obtain a posterior probability of documents, we have to cal-
culate the column of theDUSDV to get a prior probability for doc-
ument cluster, as

p(zk|dj) ∝ p(dj |zk)p(zk)

= p(dj |zk)
∑

a

p(yl, zk)

=
[
diag(1�

DUSDV )(D−1
V V

�)
]

kj

=
[
diag(1�

DUS)DV D
−1
V V

�
]

kj

=
[
diag(1�

DUS)V �
]

kj
.
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Therefore, we should normalize the encoding matrix by using the
matrix diag(1�

DUS). We assign document dj to cluster k∗ if

k∗ = arg max
k

[
V diag

(
1
�

DUS

)]
jk

. (17)

4.2. EM algorithm

In order to develop an EM algorithm to learn our model (16), we first
consider the complete-data distribution

p(X , y, z) =
M∏

i=1

N∏
j=1

p(wi, dj , y, z)Cij ,

where Cij is the empirical counts for dyad (wi, dj) in X =
{(wi, dj)}. In E-step we calculate the expected complete-data
log-likelihood ELc that has the form

ELc =
∑

l,k,i,j

Cijp(yl, zk|wi, dj) log[p(wi|yl)p(dj |zk)p(yl, zk)],

where the posterior distribution over latent variables is computed as

p(yl, zk|wi, dj) =
p(wi|yl)p(dj |zk)p(yl, zk)∑

l

∑
k

p(wi|yl)p(dj |zk)p(yl, zk)
. (18)

InM-step we re-estimate parameters p(wi|l), p(dj |zk), and p(yl, zk)
such that updated parameters (denoted by p̃) are computed as

p̃(wi|yl) =

∑
k

∑
j
Cijp(yl, zk|wi, dj)∑

k

∑
i

∑
j
Cijp(yl, zk|wi, dj)

, (19)

p̃(dj |zk) =

∑
l

∑
i
Cijp(yl, zk|wi, dj)∑

l

∑
i

∑
j
Cijp(yl, zk|wi, dj)

, (20)

p̃(yl, zk) =

∑
i

∑
j
Cijp(yl, zk|wi, dj)∑

i

∑
j
Cij

. (21)

We show the equivalence between NMTF multiplicative updates
(13)-(15) and EM algorithm (19)-(21), as in [6] where the relation
between PLSI and NMF was shown. We define T =

∑
i

∑
j
Cij .

Then, combining (19) and (21) leads to

p̃(wi|yl) =

∑
k

∑
j
Cijp(yl, zk|wi, dj)∑
k

p̃(yl, zk)T

=

∑
j

(
Cij

R

)
p(wi|yl)

∑
k p(yl,zk)p(dj |zk)

p(wi,dj)∑
k

p̃(yl, zk)
.

Taking into account Xij =
Cij

T
and

∑
a
[V S

�]aj = p̃(yj), one
can easily see the equivalence between (19) and (13). In the same
manner, remaining equations can be also shown to be equivalent.

5. NUMERICAL EXPERIMENTS

5.1. Document clustering

We applied the proposed PMTF algorithm to the task of document
clustering. We also tested NMF and NMTF with KL-divergence for
comparison. Four standard document datasets were used: CSTR[5],
NG20-binary, NG20-multi5, and NG20-multi10[13], which has 4, 2,
5, and 10 clusters, respectively. Clustering accuracy was used as a
performance measure. We measured the averaged accuracies over 10
trials with different initial conditions for each algorithm and dataset
(Table 1). All the algorithms showed similar performances, and none
of the algorithms are significantly better than the others. The PMTF
algorithm works well for the document clustering task, comparable
to the conventional NMF algorithm with KL-divergence.

Table 1. Clustering accuracies of three algorithms: NMF, NMTF,
and PMTF algorithm, averaged over 10 trials.

NMF NMTF PMTF
CSTR 0.7877 0.7814 0.7940

NG20-binary 0.9111 0.9029 0.9092
NG20-multi5 0.6731 0.6781 0.6654
NG20-multi10 0.4079 0.3984 0.4007

5.2. Estimating the number of clusters

In the practical situations, the number of clusters of given data is
usually not known in advance. To determine the number of clus-
ters of the document data, the most simple approach is to examine
the resulting divergence between the data and model. This is based
on the assumption that the divergence becomes smaller when we se-
lect appropriate number of clusters. However, the model with larger
number of clusters usually over-fitted to the data, resulting smaller
divergence than the divergence with the correct number of clusters.
To prevent this and select correct number of clusters, we have to add
some value on the divergences from the models with larger num-
ber of clusters. This kind of penalization is not a straight-forward
task because the resulting optimal cluster numbers can vary with the
amount of penalization.

In PMTF, we can calculate the likelihood of the fitted model, so
we can directly apply well-established statistical theory of model se-
lection. In this case, the amount of penalization can be determined
based on the statistical theory. Akaike information criterion (AIC)
[1] and Bayesian information criterion (BIC) [14] are the standard
model selection methods based on the statistical theory. AIC com-
pares the following quantities over the models,

AIC = logLM − kM,

where logLM is the log-likelihood of the modelM and kM is the
number of free parameters in the model. In the PMTF, logLM is
calculated as

logLM =
∑

i

∑
j

Cij log p(wi, dj)

=
∑

i

∑
j

Cij log

[∑
l

∑
k

p(wi|yl)p(dj |zk)p(yl, zk)

]
,

and kM = MK + KR + RN. On the other hand, BIC makes use
of different penalization

BIC = logLM −
1

2
kM log T,

where T is the number of data points. In the case of PMTF, T =∑
i

∑
j
Cij . BIC gives heavier penalty on the complex model than

AIC in usual cases (when T > e2 ≈ 7.38). The number of clusters
with maximum AIC or BIC value is selected as a true number of
clusters.

We demonstrate the estimation of the number of clusters using
AIC and BIC for the CSTR dataset (Fig. 1). The true number of
document clusters of CSTR dataset is four. We tried different num-
ber of clusters from one to ten, and compute AIC and BIC values
for each case. Number of term clusters was set to be equal to the
number of document clusters for each case. Ten trials were done for
each case, and the average of final likelihood value is used. As a re-
sult, AIC still cannot find the true number of clusters because of too
small amount of penalty. However, maximum BIC clearly indicates
the true number of clusters.
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Fig. 1. An exemplary behavior with the number of clusters varying, on CSTR dataset is shown: (a) the likelihood which increases as the
number of clusters increases; (b) AIC values where the curve starts to be flat when the number of clusters equals 4; (c) BIC values where the
peak is achieved at 4. Both AIC and BIC correctly identify the true of number of clusters (which is 4 in our test).

6. CONCLUSIONS

We have presented a probabilistic model for NMTF, referred to as
probabilistic matrix tri-factorization (PMTF), developing an EM al-
gorithm to learn the model. Motivated by PLSA and NMF, we have
shown that the EM algorithm for PMTF is equivalent to multiplica-
tive updates for NMTF that are derived in an algebraic way. More
specifically, they are equivalent each other at stationary points. Ex-
periments on document data sets confirmed that NMF, NMTF, and
PMTF work well in a task of document clustering. However, PMTF
is capable of detecting the number of clusters by incorporating the
likelihood into AIC or BIC, while algebraic NMF or NMTF is not.
As a future work, we are working on multilinear generalization of
PMTF, developing a probabilistic model counterpart of nonnegative
Tucker decomposition [9, 10], in order to tackle polyadic data.
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