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ABSTRACT

Nonnegative matrix factorization (NMF) is a widely-used method
for low-rank approximation (LRA) of a nonnegative matrix (matrix
with only nonnegative entries), where nonnegativity constraints are
imposed on factor matrices in the decomposition. A large body of
past work on NMF has focused on the case where the data matrix is
complete. In practice, however, we often encounter with an incom-
plete data matrix where some entries are missing (e.g., a user-rating
matrix). Weighted low-rank approximation (WLRA) has been stud-
ied to handle incomplete data matrix. However, there is only few
work on weighted nonnegative matrix factorization (WNMF) that
is WLRA with nonnegativity constraints. Existing WNMF meth-
ods are limited to a direct extension of NMF multiplicative updates,
which suffer from slow convergence while the implementation is
easy. In this paper we develop relatively fast and scalable algo-
rithms for WNMEF, borrowed from well-studied optimization tech-
niques: (1) alternating nonnegative least squares; (2) generalized ex-
pectation maximization. Numerical experiments on MovieLens and
Netflix prize datasets confirm the useful behavior of our methods, in
a task of collaborative prediction.

Index Terms— Alternating nonnegative least squares, collabo-
rative prediction, generalized EM, nonnegative matrix factorization,
weighted low-rank approximation

1. INTRODUCTION

Low-rank approximation (LRA), such as factor analysis and singu-
lar value decomposition (SVD), is a fundamental tool in handling
multivariate data or tabulated data. The goal of LRA is to seek a par-
simonious representation, assuming there are only a small number
of factors influencing a set of observed data samples. Various ap-
plications of LRA include dimensionality reduction, feature extrac-
tion/selection, clustering, and pre-processing for more sophisticated
exploratory data analysis.

LRA is often formulated as a matrix factorization problem, the
goal of which is to approximate a target matrix (data matrix) by a
product of two or three low-rank factor matrices. For example, given
a data matrix X = [z1,x2,...,x,] € R™*", the rank-r approx-
imation involves determining two factor matrices U € R™*" and
V € R™" (r < min(m,n)) such that || X — UV "||? is mini-
mized, where || - || denotes the Frobenious norm.

In various applications, all entries in the data matrix are nonneg-
ative (X > 0). Examples include images, documents, spectrograms,
and user-ratings. In such a case where the data matrix is nonnega-
tive, nonnegative matrix factorization (NMF) [9] was shown to be
useful in seeking more fruitful o r better-interpretable representa-
tion, compared to classical LRA such as SVD. Multiplicative up-
dates proposed by Lee and Seung [9] popularized NMF in diverse
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applications, including face recognition, audio and sound process-
ing, medical imaging, EEG classification for brain computer inter-
face, gene expression data analysis, document clustering, and so on.

A large body of past work on NMF has focused on the case of
complete data matrix where all entries are observed without missing
values. In practice, however, the data matrix is often incomplete with
some of entries are missing or unobserved. For instance, most entries
in a user-rating matrix are zeros (unobserved), so that matrix com-
pletion is necessary to predict unobserved ratings, which recently
becomes a popular approach to collaborative prediction [13, 12, 15].

In this paper, we consider a problem of WLRA with nonnega-
tivity constraints imposed on factor matrices, referred to as weighted
nonnegative matrix factorization (WNMF). There is only a few study
on WNMEF, while WLRA and NMF have been extensively studied.
To our best knowledge, WNMF was first used to deal with missing
values in a distance matrix for predicting distances in large-scale net-
works [11], where a direct extension of NMF was exploited, incorpo-
rating binary weights into NMF multiplicative updates. Expectation-
maximization (EM) optimization was employed to solve WNMF in
[15], where missing entries are replaced by the corresponding values
in the current model estimate in the E-step and the standard NMF
multiplicative updates are applied on the filled-in matrix in the M-
step. These existing methods for WNMEF are easy to implement but
suffer from slow convergence. Moreover, their accuracy of predict-
ing missing values are often slightly worse than WLRA even though
nonnegativity is considered. In this paper, we develop relatively fast
and scalable two algorithms for WNMEF, exploiting well-studied op-
timization techniques:

1. alternating nonnegative least squares (ANLS-WNMF)
2. generalized expectation-maximization (GEM-WNMF).

We consider collaborative prediction as an application of WNMF,
the task of which is to estimate missing values in a user-rating ma-
trix to predict a user’s preference on an item (movie in this case). We
demonstrate the useful behavior of our methods in a task of collabo-
rative prediction using MovieLens and Netflix prize datasets.

2. WEIGHTED NMF

Given nonnegative data matrix X = [X;;] € R"™", WNMF seeks
two nonnegative factor matrices U € R and V' € R}*" which
minimize the following objective function

Jwnurp(U,V) = %Z > Wy (Xij - [UVT]ij)2 ;M

i=1 j=1

where W;; are nonnegative weights. For example, missing values
are taken care of by binary weights W;; given by

1 if X;,; is observed
Wi; = { 0 !

if Xj; is unobserved.
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When all weights are equal to 1,i.e., W;; = 1fori =1,...
j=1,...,n,(1)is identical to the standard NMF

Throughout this paper, we consider a user-rating matrix X €
R™*™ where the (i,j)-entry X;; corresponds to the rating given by
user ¢ on item (movie) j. For example, Netflix prize dataset con-
tains 100,480,507 observed entries corresponding to ratings given by
480,189 users on 17,770 movies. Approximately only 1 % is filled
with observed ratings. Matrix completion is a popular method to
predict unobserved predictions, which motivated us to pay attention
to the problem of WNMEF, since user-rating matrices are incomplete
nonnegative matrices. In the case of a user-rating matrix, two fac-
tor matrices U and V' determined by the minimization of (1) are
interpreted as follows:

,m and

e Row ¢ in X is user ¢’s rating profile.

e Columns in V' are associated with rating profiles from 7 user
communities. In other words, V;; corresponds to the rating
given by user community j on item 4.

e Row 7 in U is user 7’s affinities for r user communities.

We briefly summarize two existing methods for WNMF. A di-
rect extension of NMF which incorporates binary weights into NMF
multiplicative updates [11] is referred to as Mult-WNMF in this pa-
per. Multiplicative updates for Mult-WNMF are as follows.

_ (WoX)V
U Vo o oV v )
T T
Voo ve W oX)U 3)

(WioeVUT)U’

where © is Hadamard product (element-wise product) and the divi-
sion is performed in an element-wise manner as well.

An EM algorithm for WNMF was proposed by Zhang ez al. [15].
E-step corresponds to imputation where a filled-in matrix Y is com-
puted using the current model estimate and the standard NMF mul-
tiplicative updates are applied on the filled-in matrix in the M-step.

Algorithm Outline: EM-WNMF [15]

o E-step
Y —WOX+ Lmxn—W)OUV'T 4
o M-step
YV
U Uo——or, 5
- YO90viv ®)
YU
\% Vo, 6
- VU U ©)

In EM-WNMF, the weight matrix W is normalized such that
all entries are in the range between zero and one (ie. W
W /max; j(Wi;)) and 1imxn € R™*™ is the matrix with all el-
ements filled with ones. It was shown in [15] that EM-WNMF
outperforms Mult-WNMF in a task of collaborative prediction.
However, EM-WNMF and Mult-WNMF suffer from slow conver-
gence, since they are based on multiplicative updates. Our empirical
study indicates that the accuracy of predicting missing values by
these methods is not satisfactory.
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3. ALGORITHMS

We present our algorithms for WNMEF, exploiting alternating non-
negative least squares and generalized EM optimization.

3.1. ANLS-WNMF

Several fast algorithms for un-weighted NMF have been recently de-
veloped [14, 10, 7, 6], where alternating nonnegative least squares
(ANLS) is used to solve the following two nonnegative least squares
(NLS) problems in an alternative fashion

;}nn X -UVT|* and min|X -UV|?

>0 VZO

with V' and U fixed, respectively. With U fixed, the NLS prob-
lem is tackled by solving multiple right-hand-side nonnegative least
squares (MRHS-NLS) problems

min ||z — Uv'|]?, ..., min ||z, — Uv"|?,
vi>o0 v >0

where X = [z1,...,2,] € R™™and V = [v},...,v"]T =
[v1,...,v,] € R " (row ¢ and column j in V are denoted by
(v%) T and v, respectively and the same notation is applied to other
matrices).

Various optimization methods can be used to solve the NLS
problem, including the projected gradient method [3], projected
Newton method [2], and active set method [8]. In the case of
MRHS-NLS problem, each problem can be solved separately but
this approach is inefficient and is very slow. Note that we only
have to compute the Hessian matrix one time because all Hessian
matrices are equal to U T U for each NLS problem. Incorporating
this property, Bro and Jong made a substantial speed improvement
in active set method [4]. Benthem and Keenan further improved it
by re-arranging calculations such that pseudo-inverse computations
of sub-matrices of Hessian are minimized [1].

ANLS is a block coordinate descent method where its conver-
gence to a stationary point is guaranteed when the optimal solution
is determined for each block. The NMF problem is non-convex but
each sub-problem is convex, leading ANLS to work properly. ANLS
can be also applied to WNMF because each sub-problem is still con-
vex. The sub-problem of WNMEF is a collection of several NLS prob-
lems. For example,

min % > oW (X - [UVT]M)Z

V>o i
= min 1 i’wil (962'1 - [UUI]i)Q
vizo 24 ’
.., min 1 f: Win (Tin — [U’Un}i)Q
Tyn>o 2 — ’
.1 2
= min  ~|[(Diz1) — (D1U)v4 |7,
vi>o 2
. 1 n|2
i, 3IDu) — (DU

where D; = diag(wi)l/ 2 which is a diagonal matrix with diagonal
entries corresponding to the square root of entries in w;. We also
define D' = diag(w")'/2.

Unfortunately we can not use Benthem and Keenan’s algorithm
[1] because the sub-problem (7) is not the MRHS-NLS problem (i.e.
the Hessian matrix U " Dy, U is different for each NLS problem).



Thus, we have to solve each NLS problem separately. In our imple-
mentation, we use the projected Newton method [2] for single NLS
problem.

Algorithm Outline: ANLS-WNMF

Initialize U™ > 0and VP > 0.
Fort=1,2,...

e Update U row-by-row. Fori =1,2,...,m
) 1 o )
w' Y argmin §||D1:c1 - D’VmuHQ7

u>0

,2™] T and W= [wl, .. w™] .

e Update V row-by-row. Forj =1,2,...,n

where X = [z!,...

i 1
v/ argmin =||Djx; — DU y|?,
v>0 2
where X = [z, ...

s Tn],and W = [w1,..., wy].

3.2. GEM-WNMF

Expectation-maximization (EM) is one of powerful methods in han-
dling missing values in maximum likelihood estimation [5]. An EM
algorithm for WNMEF, proposed in [15], is described in Sec. 2, where
E-step (4) is performing imputation to determine Y and M-step (5)
and (6) re-estimate factor matrices by applying unweighted NMF to
the filled-in matrix Y.

The filled-in matrix Y, in general, is a dense matrix even if X
is a very sparse matrix, which prohibits the E-step in EM-WNMF
for large-scale data. The memory space required to store Y and the
computational complexity to calculate UV T are extremely large.
Moreover, the M-step requires much more computation time.

We overcome this problem by interweaving E-step and partial
M-step. In contrast to EM-WNMF where multiplicative updates are
used in the M-step, we employ ANLS optimization for the M-step,
where we use Benthem and Keenan’s algorithm [1] with projected
Newton method to solve MRHS-NLS:

U «— MRHSNLS(V'V,YV), (7
V. «— MRHS-NLS(U'U,Y 'U), ®)

where two input arguments in MRHS-NLS(+, -) are the terms re-
quired to compute the gradient and Hessian. For example, VU =
VIVU -YV and Vu' = -+ = Vu™ = V'V, It fol-
lows from (7) and (8) that only YV or YU are required in the
M-step, instead of Y itself. This simple trick dramatically allevi-
ates the computation and space burden. For example, the calculation
YV is given by

YV

[W OX + (Inxn — W) @OV V

[W X -UuvHv+uwTv),

which requires [U'V "];; for only Wi; > 0, instead of the entire
uv'.

In addition to this simple trick, we use partial M-step. At earlier
iterations, estimation for missing values is not accurate, so solving
M-step exactly is not desirable. Thus, iterations in the M-step (7)
and (8) proceed just until substantial improvement (instead of deter-
mining optimal solutions).

Algorithm Outline: GEM-WNMF

Initialize U™ > 0and V) > 0.

Fort=1,2,...
E — WoXxX-uYv®h,
Ut MRHSNLS (VOTVO BV 4 Uy OTY ),

W o (X _ U(t+1)‘/(t)—r)7
MRHS-NLS (U““’TU““),

ETU®Y 4 V“W““”U“*”) .

E
V(H'l)

4. NUMERICAL EXPERIMENTS

We evaluate the performance of three algorithms (Mult-WNME,
ANLS-WNMF, GEM-WNMF) in terms of the convergence speed
and the prediction accuracy of missing values. All these algorithms
were implemented in Matlab and all experiments were run on Intel
Core2 Quad 2.4 GHz processor with 8§ GB memory under Windows
Vista 64bit. We use MovieLens and Netflix prize datasets for our
experiments, which are summarized in Table 1.

Table 1. Dataset descriptions.

MovieLens  Netflix prize
# of users 6,040 480,189
# of movies 3,952 17,770
# of ratings 1,000,209 100,480,507
density (%) 4.19 1.18

In order to get a fair comparison, we design our experiment fol-
lowing way for each test case;

1. Always use the same randomly generated starting point for
every algorithms.

2. Run the Mult-WNMF algorithm for a given number of itera-
tions, and record the CPU time used.

3. Then run other algorithms, and stop them once the CPU time
used is equal to or greater than that used by the Mult-WNMF
algorithm.

We note that each algorithm require different computation time for
one iteration. Steps 2 and 3 in our experiment design ensure that a
fair comparison is carried out so that every algorithms are run for
approximately the same amount of time for each test case.

We set the iteration number of Mult-WNMEF to 600. With these
setting, the training time was about 500 seconds and 24 hours for
MovieLens and Netflix prize data respectively. In the case of Movie-
Lens data, we randomly split the user-ratings into 5 folds and only
used 4 partitions for training. In the case of Netflix prize data, we
held out 1,408,395 user-ratings which belong to prove set for test
data. Note that we added regularization term 3 (||U||* + ||V ||?) into
objective function (1) to prevent over-fitting problem, where A = 3
in our all experiments.

Fig. 1 shows the root mean squared error (RMSE) values
against time. Our algorithms, especially ANLS-WNMF, are faster
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Fig. 1. Convergence speed comparison of Mult-WNMF, ANLS-
WNME, and GEM-WNMF on: (a) MovieLens; (b) Netflix prize data

than Mult-WNMF. Note that, existing EM algorithm for WNMF
was about 200 times slower than Mult-WNMF in experiments with
MovieLens data [15] and can not applied to Netflix prize data.

In addition to training speed, our algorithms outperformed the
Mult-WNMF in the perspective of prediction accuracy of missing
values. Table 2 shows the training and test error of each algo-
rithm for MovieLens and Netflix Prize datasets. ALS-WLRA and
GEM-WLRA are algorithms for WLRA which are obtained from
ANLS-WNMF and GEM-WNMF by releasing the nonnegativity
constraints.

Table 2. From top to bottom, training error of MovieLens, test er-
ror of MovieLens, training error of Netflix dataset, and test error of
Netflix dataset with different rank.

Mult. ANLS GEM ALS GEM
Rank | WNMF WNMF WNMF | WLRA WLRA
6 0.8029  0.7988  0.8048 | 0.8004  0.7948
8 0.7815  0.7782  0.7825 | 0.7751  0.7714
10 0.7676 ~ 0.7617  0.7671 | 0.7511  0.7564
12 0.7556  0.7462  0.7543 | 0.7325  0.7390
6 0.8664  0.8615  0.8624 | 0.8646  0.8645
8 0.8640  0.8602 0.8602 | 0.8613  0.8664
10 0.8689  0.8637 0.8638 | 0.8768  0.8692
12 0.8796  0.8680  0.8652 | 0.8889  0.8776
6 0.7065  0.7049  0.7106 | 0.7026  0.7067
8 0.6944  0.6919  0.6975 | 0.6881  0.6922
10 0.6854  0.6820  0.6878 | 0.6770  0.6810
6 0.9482  0.9479 09493 | 0.9600 09529
8 0.9493  0.9483  0.9439 | 09676 0.9513
10 0.9523  0.9509 09425 | 0.9770  0.9520

The over-fitting problems occurs as the rank increase (i.e. train-
ing error is reduced but test error is increased). Note that even non-
negativity is considered, the test error of Mult-WNMF slightly worse
than WLRA in the case of MovieLens data set. However our algo-
rithms always showed the best performance.

5. CONCLUSIONS

We have presented relatively fast and scalable algorithms for
WNME, showing its useful behavior in a task of collaborative pre-
diction. Compared to existing methods such as Multi-WNMF and
EM-WNMF, we have shown that our algorithms ANLS-WNMF and
GEM-WNMF work better with lower computational burden, which
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fit better for large-scale data.
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