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ABSTRACT

This paper addresses the problem of image retrieval from

an encrypted database, where data confidentiality is pre-

served both in the storage and retrieval process. The paper

focuses on image feature protection techniques which enable

similarity comparison among protected features. By utiliz-

ing both signal processing and cryptographic techniques,

three schemes are investigated and compared, including bit-

plane randomization, random projection, and randomized

unary encoding. Experimental results show that secure im-

age retrieval can achieve comparable retrieval performance

to conventional image retrieval techniques without revealing

information about image content. This work enriches the area

of secure information retrieval and can find applications in

secure online services for images and videos.

Index Terms— Secure image retrieval, feature protec-

tion, relevance based search, content based image retrieval

1. INTRODUCTION

Information retrieval from encrypted databases is an impor-

tant technological capability for privacy protection in mul-

tiparty information management. Representative application

scenarios include online services of webmail such as Gmail,

photo hosting such as Flickr, and financial management such

as Mint.com, where users store their private information on

some remote server and the server provides functionalities to

the user, such as categorization, search, and data analysis.

Currently, servers operate on plaintext data, making users’

private information vulnerable to attacks by untrustworthy ad-

ministrators and malicious intruders. To provide secure on-

line services, technologies that protect users’ privacy without

sacrificing functionalities are desirable.

The growth of online photo services and the concerns

of privacy protection make searching over encrypted images

both attractive and necessary. A desirable feature for online

photo services such as Google Picasa or Flickr would be

the capability to encrypt and store private images, and later

retrieve relevant images without revealing any information

about the encrypted images to the server. Prior work on se-

cure information retrieval was focused on text documents.

Techniques for identifying the presence or absence of a key-

word in an encrypted text document were proposed in [1, 2].

Recent work in [3] investigated secure rank-ordered search,
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where encrypted text documents are returned in the order of

relevance to the query keyword.

Although secure text search techniques can be extended

to image retrieval based on user assigned tags, extension to

content based image retrieval (CBIR) is not straightforward.

CBIR systems often rely on comparing the similarity among

image features, such as color histograms, shape descriptors,

or salient points, which are usually high dimensional vectors

[4]. Comparing similarity among high dimensional vectors

using cryptographic primitives is challenging. To the best of

our knowledge, no existing techniques address secure feature

comparison efficiently and effectively.

To build a secure CBIR system, both images and features

should be protected. For a feature based retrieval system, im-

ages can be encrypted separately using cryptographic ciphers

or image encryption algorithms. This paper focuses on the

problem of image feature protection which allows the com-

putation of similarity measures among encrypted features, so

that secure CBIR can be achieved.

To our best knowledge, this work along with [5] are the

first endeavors on content based image retrieval in an en-

crypted domain. We address the problem by jointly using

signal processing and cryptographic techniques. Three fea-

ture protection schemes are explored and compared in terms

of security, retrieval performance, and computational com-

plexity. We show that retrieval performance comparable to

conventional CBIR techniques can be achieved by the pro-

posed feature protection schemes. These schemes can be used

as building blocks to build efficient indexes, for search over

large image databases. They can also be extended to secure

video search by protecting features from the key frames.

2. FEATURE PROTECTION METHODOLOGY

Similarity of two images is typically measured by comput-

ing the distance between features extracted from the im-

ages [4]. For secure image retrieval, we seek to design

techniques to encrypt image features, while approximately

preserving their distances. Suppose we represent image

features as vectors in R
n, we seek an encryption function

E(·) : R
n → R

m, such that given two image feature vectors

f and g, dE(E(f), E(g)) ≈ c · d(f ,g), where dE(·, ·) and

d(·, ·) are some appropriate distance measures, and c is a

constant scaling factor. In the remainder of this section, we

describe techniques to construct encryption functions that are

approximately distance-preserving.

1533978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



2.1. Bit-plane Randomization
The most significant bits (MSB) of an image capture impor-

tant information about image appearance. The concept of pro-

cessing bitplanes from MSBs to LSBs has been used in multi-

media signal processing such as scalable encoding to provide

fine granular trade-off between bitrate and quality. Feature

vectors with small distance are also likely to have similar pat-

terns among their MSB bitplanes. This motivates us to in-

vestigate scrambling of feature values in such a way that the

patterns in their MSB bitplanes are preserved.

Given a feature vector f = [f1, · · · , fn] ∈ R
n, each com-

ponent fi is represented in its binary form as [bi1, · · · , bil],
where l is the total number of bitplanes. The jth bitplane of

f is composed of the jth MSB of its components, denoted

as [b1j , b2j , · · · , bnj ]. The Hamming distance between two

bitplanes is preserved when they are XORed with the same

binary vector or when they are permuted using the same per-

mutation pattern. We exploit this property to encrypt the top

k bitplanes of the feature vectors while preserving their Ham-

ming distances. The encryption of the jth bitplane of any

feature vector is illustrated in Fig. 1. The bits comprising the

bitplane are first XORed with a random bit sequence to hide

the original number of 1’s in each bitplane. The resulting bits

are then randomly permuted to obtain the encrypted bitplane.

All the encrypted bitplanes form the encrypted feature

vector E(f) = [f̃1, · · · , f̃n]. The distance between two

encrypted feature vectors E(f) and E(g) is computed as a

weighted sum of the Hamming distance between their indi-

vidual bitplanes:

dE(E(f), E(g)) =
n∑

i=1

l∑
j=1

|b̃(f)
ij − b̃

(g)
ij | × w(j). (1)

Here w(j)s are the weights assigned to the bitplanes to reflect

their unequal importance. w(j) is chosen to be 2−j in this

paper. Since using the same permutation and XOR pattern on

corresponding bitplanes of two feature vectors preserves their

Hamming distance, we have

dE(E(f), E(g)) =
n∑

i=1

l∑
j=1

|b(f)
ij − b

(g)
ij | × 2−j

≥
n∑

i=1

∣∣∣∣∣∣

l∑
j=1

(b(f)
ij − b

(g)
ij ) × 2−j

∣∣∣∣∣∣
= ‖f − g‖1.

(2)

The distance dE(·, ·) between encrypted features upper

bounds the original L1 distance. The distortion between the

distance distributions before and after the aforementioned en-

cryption mainly comes from the fact that some feature vectors

which have small L1 distance may have large distance under

dE(·, ·). For example, 8 = (1000)2 and 7 = (0111)2 have

L1 distance 1 but dE(8, 7) = 15. Fortunately, such cases oc-

cur with a relatively low probability, and we shall show in

Section 3.1 that bitplane randomization leads to only a slight

reduction in retrieval accuracy, as a trade-off for security.

Permutation
πj(1, 2, · · · , n)

XOR

[r1j , r2j , · · · , rnj ]

[b1j , b2j , · · · , bnj ] [b̃1j , b̃2j , · · · , b̃nj ]

Fig. 1. Encryption of the jth bitplane

2.2. Random Projection
Random projection is based on the idea that close points in

high dimensional space will remain close with high proba-

bility after projection onto a low dimensional space and has

been used as a building block for developing efficient search

techniques for large databases [6]. Random projection can

be used to obfuscate the original values of the feature vectors

while approximately preserving their distance.

Given a feature vector f ∈ R
n, we generate a key-

dependent Gaussian random matrix R ∈ R
m×n with in-

dependent standard Gaussian components. The encryption

function is then defined as E(f) = R · f . Considering the

L1 distance of encrypted features, i.e. dE(E(f), E(g)) =
‖E(f) − E(g)‖1, the linearity of random projection makes

the distribution of dE(·, ·) proportional to the original distri-

bution in the Euclidean space, i.e. dE(f ,g) ≈ c · ‖f − g‖2

with high probability for some scaling factor c [7]. L1 dis-

tance between original feature vectors can be preserved by

projecting
√

f = [
√

f1, · · · ,
√

fn] instead of f . The distance

distortion under both L1 and L2 distance metrics can be made

arbitrarily small by increasing m. The projection dimension

m controls the trade-off between retrieval performance and

storage, as will be shown in Section 3.1.

2.3. Randomized Unary Encoding
Since non-integer valued features can be converted to inte-

gers after proper scaling and round off, we consider integer-

valued feature vectors here and represent them in binary form

through unary encoding. Unary encoding of a positive inte-

ger N is a binary string of N 1’s followed by 0’s. The unary

encoding of a feature vector is a binary string formed by con-

catenating the unary representation of its components:

U(fi) = 11 · · · 11︸ ︷︷ ︸
fi

00 · · · 00︸ ︷︷ ︸
M−fi

, (3)

U(f) = [U(f1),U(f2), · · · ,U(fn)], (4)

where M is the maximum possible value in all the feature

vectors.

By performing XOR and randomly permuting the unary

representation, we preserve the Hamming distance among

U(f),∀f , which also equals the L1 distance between original

feature vectors. However, the disadvantage of using XOR and

permutation alone is the storage increase from O(n log M)
bits to O(nM) bits. To reduce storage, we further apply

random projection on E1(f), which also helps enhance the

security of the scheme, as will be shown in Section 3.2.
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Denote the encryption by XOR and permutation as E1(·)
and random projection as E2(·). The overall encryption func-

tion E(·) is now E1(·) followed by E2(·) and can be written

as E(f) = E2(E1(f)) ∈ R
m. Considering L1 distance of en-

crypted features, we have the approximate distance preserv-

ing property

dE(E(f), E(g)) ≈ c · ‖E1(f) − E1(g)‖2 = c · ‖f − g‖1. (5)

The randomized unary encoding scheme effectively preserves

the L1 distance of original feature vectors with high probabil-

ity and enhanced security.

3. PERFORMANCE ANALYSIS

3.1. Retrieval Accuracy
We evaluate the retrieval performance of image features en-

crypted by the three schemes on a subset of the Corel database

containing 1000 images, obtained from [8]. These images are

grouped by content into 10 categories with 100 images in

each category: African, Beach, Architecture, Buses, Di-

nosaurs, Elephants, Flowers, Horses, Mountain, and Food.

This database has been widely used as ground-truth for eval-

uating color image retrieval [4, 9]. We use global color

histogram in the HSV space as image features. A 128-

dimensional color histogram is generated from every image

by quantizing the hue, saturation, and intensity channels into

8, 4, and 4 levels, respectively, where finer quantization is

allocated to hue as suggested in [9].

We evaluate retrieval performance by the precision-recall

curves. Every image in the database is used as a query and

the average precision-recall curve for each protection scheme

is obtained and shown in Fig. 2. As a reference, the results

using plaintext color histograms from [9] are plotted as the

top and the bottom curves. We can see that retrieval based on

feature protection schemes achieve comparable performance

to plaintext retrieval: better than plaintext retrieval based on

L2 distance and only slightly lower than plaintext retrieval

based on L1 distance, which is approximately preserved in the

three schemes. By searching over encrypted features, we only

need to retrieve about 1% − 9% more images to get the same

number of relevant images as in plaintext search. Thus, secure

retrieval can be achieved by trading off retrieval accuracy.

Among the three feature protection schemes introduced

in Section 2, we can see the trade-off among retrieval perfor-

mance, storage, and computational complexity. By doubling

the projection dimension m from 128 to 256, the gap between

the curves of plaintext and randomized unary encoding can be

reduced by half, and the performance of random projection

can be made almost the same as plaintext search (not shown

in the figure). Bitplane randomization has time complexity

O(kn) which is lower than O(mn) in random projection and

O(mnM) in randomized unary encoding. M in randomized

unary encoding can be quantized to a much smaller value to

reduce complexity. In this paper, we quantize M from 98304

to 128 with no loss in retrieval performance. The higher com-
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Fig. 2. Retrieval performance on the Corel database

plexity of randomized unary encoding is a trade-off for better

security, which is analyzed in the next section.

3.2. Security Analysis
The random permutation, XOR pattern, and Gaussian ran-

dom matrix used in above schemes are generated based on

a user specified key K, which is kept secret from attackers. A

cryptographically secure pseudo random number generator is

used for generating keys and random numbers. Here we focus

our security analysis on two attack models, namely, ciphertext

only attack and known plaintext attack.

Ciphertext Only Attack (COA): This model assumes that

the attacker, such as an untrustworthy server or malicious in-

truder, has access to encrypted features stored on the server

but has no knowledge of the plaintext feature or the secret key.

Under COA model, the attacker can compute distances be-

tween image features and infer which images in the database

are similar. This information leakage is inevitable if we are

to provide search capability. We show below that an attacker

cannot gain any additional information about the database.

In COA model, guessing a secret key or the randomiza-

tion pattern requires an exhaustive search over a prohibitively

large space. For the 128-dimension color histogram, the num-

ber of possible permutations in the bitplane randomization

scheme is around 10215. An attacker may instead search the

database with query features encrypted using a randomly se-

lected key and analyze the retrieval results.

Denote by EK(f) the feature f encrypted using the user’s

key K and by EKa
(g) the feature encrypted using a wrong

key Ka, where g is a feature known to the attacker. The dis-

tance between EK(f) and EKa(g) in bitplane randomization

scheme can be written as

dE(EK(f), EKa
(g)) =

n∑
i=1

l∑
j=1

|b̃(f)
ij − b̂

(g)
ij | × 2−j . (6)

As b̃
(f)
ij and b̂

(g)
ij are generated using two different keys, they

are independent and |b̃(f)
ij − b̂

(g)
ij | becomes a random variable

equally likely to be 0 or 1 for all i, j. By the law of large

numbers, dE(EK(f), EKa(g)) is a constant for any f given

g with high probability. Using similar arguments, it can be

shown that the distance between two features encrypted using
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Fig. 3. Retrieval performance with wrong key.

random projection with different keys is a constant with high

probability.

From the above analysis, we conclude that the feature en-

crypted using a wrong key has approximately equal distance

to every encrypted feature in the database. Hence, retrieval

using a wrong key is equivalent to randomly picking images

from the database. Precision-recall curves for retrieval using

a wrong key, shown in Fig. 3, verify this conclusion. The

top curve is from plaintext search with a correct key and the

remaining curves are for retrieval using an incorrect key, for

each of the three schemes. We see that the curves of the three

schemes using a wrong key have approximately a constant

precision value of 0.1. Since there are 100 images for each

category among the 1000 images, this verifies that retrieval

over the encrypted database using a wrong key returns images

randomly selected from the database.

Known Plaintext Attack (KPA): This model assumes that

the attacker knows some pairs of plaintext features and corre-

sponding encrypted features. We compare the security of the

three schemes using the number of ciphertext-plaintext pairs

required to accurately estimate the randomization.

In bitplane randomization, the XOR pattern can be ob-

tained directly from one pair of ciphertext and plaintext once

the permutation pattern is known. To evaluate the security

of permutation under KPA model, we consider one bitplane

[b1j , · · · , bnj ] and its permuted version [b̃1j , · · · , b̃nj ]. It is

clear that n − 1 linearly independent binary vectors and their

permuted versions will reveal the permutation pattern. Thus,

the attacker requires O(n) pairs of plaintext and ciphertext to

break the scheme.

To evaluate the security of random projection under the

KPA model with the pairs of (fi, E(fi)), i = 1, · · · , k, known

by the attacker, we have E(F) = R · F, where F, E(F) have

fi, E(fi) as their ith column, respectively. The encryption ma-

trix R can then be easily obtained if F is invertible. Thus,

the attacker requires O(n) pairs of plaintext and ciphertext to

break the random projection scheme.

In randomized unary encoding, feature encryption is done

in two stages: f → E1(f) → E2(E1(f)) = E(f), where E1

denotes XOR and permutation and E2 denotes random pro-

jection. Deducing the encryption functions E1(·), E2(·) re-

quires knowledge of (f , E1(f)) and (E1(f), E(f)). Plaintext

f is decorrelated from ciphertext E(f) because E1(f) is un-

known. The security of randomized unary encoding under

KPA model is essentially equal to the security of other two

schemes under COA model. This implies that in applications

which require higher security, we can use randomized unary

encoding to provide enhanced security at the expense of in-

creased computation.

4. CONCLUSIONS

This paper explores techniques which enable similarity com-

parison among encrypted image features, based on which se-

cure content based image retrieval can be achieved. We show

that the combination of signal processing and cryptographic

techniques, such as random projection, unary encoding, and

random permutation, helps us address the problem of secure

image retrieval, which is otherwise difficult using traditional

cryptography alone. The feature protection schemes explored

in this paper exhibit retrieval performance comparable to

the state-of-the-art techniques, and good trade-off can be

achieved between security and computational complexity.

These schemes can also be combined with efficient indexing

techniques such as [6, 10] and scaled to large databases.
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