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ABSTRACT

This paper considers a method for learning a distance metric
in a fingerprinting system which identifies a query content by
measuring the distance between its fingerprint and a finger-
print stored in a database. A metric having a general form of
the Mahalanobis distance is learned with the goal that the dis-
tance between fingerprints extracted from perceptually simi-
lar contents should be smaller than the distance between fin-
gerprints extracted from perceptually dissimilar contents. The
metric is learned by minimizing a cost function designed to
achieve the goal. The cost function is convex, and the global
minimum can be obtained using convex optimization. In our
experiment, the distance metric learning is applied in an au-
dio fingerprinting system, and it is experimentally shown that
the learned distance metric improves the identification perfor-
mance.

Index Terms— Fingerprinting, Identification, Distance
measurement

1. INTRODUCTION

There is a growing demand for protecting, managing, and in-
dexing digital content, and as a viable solution, fingerprinting
is receiving increased attention. Fingerprinting is a technique
that identifies an unknown content using a short feature vector
called fingerprint. In recent years, various audio/video/image
fingerprinting systems have been proposed [1]-[7].

A fingerprinting system for content identification gener-
ally consists of three essential components: fingerprint ex-
traction, database (DB) search, and fingerprint matching [4].
In the fingerprint extraction process, a query fingerprint is ex-
tracted from a query content. In the DB search process, a
set of candidate fingerprints from a DB close to the query
fingerprint are obtained. In the fingerprint matching process,
the distances between the candidate fingerprints and the query
fingerprint are computed based on a distance metric. The fin-
gerprinting system provides the meta-data associated with the
closest candidate fingerprint.

This work was supported by the Korea Research Foundation Grant
funded by the Korean Government(MOEHRD, Basic Research Promotion
Fund)(KRF-2008-314- D00309)

978-1-4244-2354-5/09/$25.00 ©2009 IEEE

1529

The fingerprint extraction and matching processes influ-
ence the identification performance more than the DB search
process which determines the computational efficiency of the
system. The identification performance depends highly on the
distance metric used in fingerprint matching process.

In this paper, a method for learning a distance metric in
fingerprint matching is considered [8, 9, 10, 11]. In recent
years, various literatures have shown that distance metric learn-
ing can improve classification and clustering performances
[11]. The distance metric used in previous fingerprinting sys-
tems, which is not determined by learning, may not be suit-
able to the fingerprint used in the fingerprinting system and
the distortions, thus the identification performance can be im-
proved by metric learning.

By learning a distance metric from training data consist-
ing of original and distorted contents, the identification per-
formance can be improved. Fingerprints of original contents
are assumed to be fingerprints stored in a DB, and finger-
prints of distorted contents are assumed to be the query fin-
gerprints. For correct identification, the distance of the fin-
gerprint of a distorted content to the fingerprint of the orig-
inal content from which the distorted content was obtained
- called hereafter corresponding content - should be smaller
than the distance to fingerprints of other original contents -
called hereafter non-corresponding contents. A large distance
margin should be established between fingerprints of the dis-
torted and non-corresponding contents [10]. This is the goal
of the distance metric learning considered in this paper, and
specifically a distance metric having a general form of the
Mabhalanobis distance is considered. A cost function to be
minimized is designed so that the cost increases when the fin-
gerprint of the distorted content is further away from the fin-
gerprint of the corresponding content than from fingerprints
of non-corresponding contents. The parameter of the distance
metric is determined by minimizing the cost function by con-
vex optimization. We assume that the fingerprint is real val-
ued, thus the distance metric learning considered in this paper
is effective only for the real-valued fingerprint.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the distance metric, and Section 3 explains
the cost function used to learn the distance metric. Section 4
presents the experimental results, and Section 5 concludes the

paper.
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2. DISTANCE METRIC

The considered distance metric measures the distance between
two N-dimensional fingerprints x and x’ as ||¢(x) — ¢(x’)||?
where ¢ : RV — RY is a mapping function. This paper con-
siders a linear projection, thus ¢(+) is chosen as ¢(x) = Wx
where W is N x N-dimensional matrix. The distance is com-
puted as

l6(x) = (x> = (x = x)TA(x — %) )

where A = WTW. Thus, the distance metric has a general
form of the Mahalanobis distance. Hereafter, the distance is
denoted as Da (x,x’) = ||¢(x) — é(x")||?. To learn the dis-
tance metric means to determine the matrix A, which is the
parameter of the distance metric. If A is the identity matrix,
D (x,x’) is the Euclidean distance.

3. LEARNING USING THE COST FUNCTION

3.1. Training data

To learn a distance metric, a set of training data consisting
of the fingerprints of the original and the distorted contents,
which are respectively denoted as x; and x; ; (4 = 1,2,--- , T
and j = 1,2,---,J), is required. The fingerprint x; ; is ex-
tracted from the jth distorted version of the ith original con-
tent from which x; is extracted. In the learning procedure, x;
represents the fingerprint stored in a DB, and x; ; represents a
query fingerprint. The pair (x;, X; ;) is a matching fingerprint
pair, and the pair (x, x; ;) (k # %) is a non-matching pair. In
this paper, distortions that often occur in real application are
considered.

3.2. Cost function

The parameter of the distance metric A is determined so that
a cost function is minimized. The cost function is minimized
when Da (x;,X; ;) is smaller than Da (xy,x; ;) for k # i.
To correctly identify a query content which is assumed to be a
distorted version of the original content, x; ; should be closer
to x; than to any xj, for & # 4. The cost function considered
in this paper is given by

e(A) = > [M + Da(xi,xi;) = Da(Xe(i gy xig)ls ()
i

where [ !, M, and x¢(; ;) denote respectively the standard
hinge loss function, margin, and the non-corresponding fin-
gerprint closest to x; ;. The index £(z, j) is mathematically
expressed as

§(4,5) = argy, j; min DA (Xg, X; ;). 3)

2]+ = max(z,0)
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Fig. 1. Due to the hinge loss function, the cost function
does not increase for the case (a) M + Da(x;,%x;;) <
Da(Xe(i,j), Xi,5), and the cost is added to the cost function
for the case (b) M + Da (X, X;,;) > Da(Xe(i,5) Xi,j)

Including both a constant M and the hinge loss function in
Equation (2) and minimizing (A ) enforce Da (X¢(; 5), Xi,j) >
M + Da(x4,%; ;) [10]. Thus, the distance metric is learned
so that the distances between query fingerprint x; ; and its
non-corresponding fingerprints are at least larger than (M +
Da(xi,%;,5)). The summand of (A) equals 0 when x¢(; ;)
lies outside the ball centered at x; ; with the radius of (M +
DA (x4,%;,;)) as shown in Fig. 1 (a). But, the cost of (M +
Da(xi,%i,5) — Da(Xe(,5),Xi,5)) is added to the cost func-
tion when x¢(; ;) lies within the ball as shown in Fig. 1 (b).
Without loss of generality, we set M = 1 since A can be
scaled by M.

3.3. Convexity of the cost function

The cost function is a convex function in A, thus the global
minimum can be obtained. To prove convexity, £(A) is rewrit-
ten as
e(A) = [K(A,i,5)]+ )
ij

where K (A, 1, 7) is defined by
K(A,i,j) = M + Da(xq,Xi ;) — Da(Xe(i ), Xij)- (5)

If [K(A,i,7)]+ is convex, then £(A) is also convex since
a sum of convex functions is also convex. If the function
K(A,1i,7)isconvex, then [K (A, i, 7)]+ is also convex. Since
K(A,i,j7) is a sum of a constant and two linear functions,
K(A,i,j) is linear with A. Thus K (A, 1, j) is convex, and
e(A) is also convex.

3.4. Optimization

To find matrix A, the projected gradient method is used [12].
The distance metric should be non-negative and satisfy the
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Iterate
A=A —pVe(A)
A= argy min{||A’ — A||p : A" > 0)

until A converges

Fig. 2. Procedure to find A. Here, 3 is the step size, and ||-|| »
is the Frobenius norm (||A||p = 3=, ; A7 )'/).

triangle inequality, A must be positive semidefinite [8]. The
projected gradient method is performed in two steps. First,
gradient decent method is used for unconstraint minimization
problem. Then, A is projected to a space of positive semidef-
inite. The procedure to find A is shown in Fig. 2. The pro-
jection is performed by a semidefinite programming [12].

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

The performance improvement due to the the distance metric
learning is presented in terms of the performance improve-
ment in its application to an audio fingerprint system [4]. In
the system proposed in [4], the 16-dimensional fingerprint is
extracted in 371.5ms frame whose shift is 185.7ms, and the
Euclidean distance is used in fingerprint matching. The fin-
gerprint matching is performed using the fingerprint from 5 or
10s audio clip (27 or 54 frames), thus N = 432 or N = 864.
Thus, in our experiment, the performance obtained by learned
distance metric is compared with that obtained by the Eu-
clidean distance when N = 432 or N = 864. In the ex-
periment, the DB search process in fingerprinting system is
excluded since only the performance of fingerprint matching
is our concern.

Learning of an N x N-dimensional matrix is computa-
tionally intractable since N is too large. Thus, in our exper-
iment, an M x M-dimensional matrix (denoted as Ag) was
learned instead of A (M < N). Using the M -dimensional
fingerprint (fingerprint of M /16 frames) obtained by divid-
ing N-dimensional fingerprint into M -dimension, Ag is de-
termined. The distance between x and x’ is computed as

N/M
-DNA(Xa Xl) - Z (xs(k) - Xs/(k))TAs(Xs(k) - XS/(k)) (6)
k=1

where xs(’“) and x’ (*) denote the M-dimensional fingerprint
obtained by dividing respectively x and x’. In our experiment,
M = 48, thus the summand in Equation (6) is the distance
between fingerprints of 3 frames.

4.2. Training set

A set of training data from 100 different songs is used for
distance metric learning. In our experiment, / = 8000 and

J = 4. The list of audio distortions considered in our experi-
ment is as follows [2]:

L1 Octave band equalization (EQ1): Adjacent band atten-
uations set to -6dB and +6dB in an alternating fashion.

L2 Echo (E): Filter-emulating old time radio.

L3 Band-pass filtering (BPF): 0.4-4kHz band pass filter-
ing.

L4 WMA encoding (WMA): 64kbps WMA encoding.

For every distortion, 96kbps MP3 encoding (MP3) is fol-
lowed.

4.3. Comparative test

For performance evaluation, 100 different songs completely
separate from the training set were used as a test set. In
the evaluation, 7 distortion were considered: EQI1, E, BPF,
WMA, and the following 3.

T1 Time delay (TD): 92.9ms shift.

T2 Sampling rate change (SR): Down-sampling to 16kHz
and up-sampling to 44.1kHz.

T3 1/3 octave band equalization (EQ?2): 30-band pop equal-
ization.

The test sets of 3 combined distortions were also considered.
Each combined distortion includes the distortions considered
in the learning and not considered in the learning.

Fig. 3 compares the fingerprinting performances using the
learned distance metric with those using the Euclidean dis-
tance by showing the receiver operating characteristic (ROC)
curve. The ROC curve plots the false negative (FN) rate ver-
sus the false positive (FP) rate. The FN rate is defined as the
rate that matching fingerprint pairs are determined as non-
matching pairs, and the FP rate is defined as the rate that non-
matching fingerprint pairs are determined as matching pairs.
For each experiment, 60, 000 matching and 100, 000, 000 non-
matching fingerprint pairs were used. Fig. 3 (a)-(d) show the
performance against the distortions considered in the learn-
ing, and Fig. 3 (e)-(g) show the performance against the dis-
tortions not considered in the learning. Fig. 3 (h)-(j) show the
performance against combined distortions. As shown in the
figure, the performances obtained using the learned distance
metric are better than or comparable to the performances ob-
tained using the Euclidean distance. The metric learning ex-
tremely improves the performance against the distortions of
E and BPF which are the more serious distortions among the
4 distortions used in the learning. The identification perfor-
mances are also extremely improved against the combined
distortions which include E and BPF (Fig. 3 (i) and (j)). The
metric learning does not degrade the performance against the
distortions which were not considered in the learning process.
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5. CONCLUSION AND FURTHER WORKS

In this paper, the method to improve the fingerprint match-
ing process through distance metric learning is considered.
By minimizing the cost function which concerns identifica-
tion performance, the distance metric is learned. The cost
function is designed to decrease when the query content is
correctly identified. In our experiment using an audio finger-
printing system, it is shown that the distance metric learning
improves the fingerprinting performance. The followings are
left as further works. To confirm the improvement induced by
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