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ABSTRACT
With the widespread popularity of digital images and the
presence of easy-to-use image editing software, content in-
tegrity can no longer be taken for granted, and there is a
strong need for techniques that not only detect the presence
of tampering but also identify its type. This paper focusses on
tampering-type identification and introduces a new approach
based on the Empirical Frequency Response (EFR) to address
this problem. We show that several types of tampering oper-
ations, both linear shift invariant (LSI) and non-LSI, can be
characterized consistently and distinctly by their EFRs. We
then extend the approach to estimate the EFR for scenarios
where only the final image is available. Theoretical reasoning
supported by experimental results verify the effectiveness of
this method for identifying the type of a tampering operation.

Index Terms— Multimedia forensics, tampering type
identification.

1. INTRODUCTION

Nowadays, due to the widespread popularity of digital cam-
eras and online photo hosting services, a large number of pho-
tographs have been generated and distributed. At the same
time, the advent of various image editing software packages
has made altering the photo content easier even for novice
users. Since the authenticity of digital photos impacts on how
we use it, content integrity has become an important forensic
issue. For a given photo, one may ask if it has been tampered
or manipulated and further by what type of tampering opera-
tion. This paper focuses on the latter question and presents a
framework to determine the type of tampering operation that
has been performed.
Prior works fall into two main categories. In the first cat-

egory, methods have been proposed to detect resampling [1],
JPEG compression [2], and Gamma correction [3], by extract-
ing certain salient features that would help distinguish such
tampering from unprocessed images. Although these meth-
ods can be employed to identify the type and the parameters
of the tampering operation, an exhaustive search over a pool
of operations is required to detect tampering and to identify
the type of tampering operation. Therefore, there is a strong
need for universal technique to detect and identify tampering.
In the second category, classifier-based approaches to de-

tect image tampering were proposed in [4][5], where features
based on analysis of variance [4] and higher order wavelet
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statistics [5] have been used. In [6], a framework was pro-
posed by modeling tampering as a combination of a linear and
shift-invariant (LSI) and a non-LSI part. The authors present
methods to estimate the LSI part of manipulation operation
and compare the estimate to an identity transform to detect
tampering. These works aim to just detect tampering and thus
focus on answering whether the given image was tampered or
not, and are not for identifying the type of tampering.
In this work, we propose a framework based on the Empir-

ical Frequency Response (EFR) that aims to identify the ma-
nipulation type. We show that many classes of LSI or non-LSI
image processing operations, such as resampling, JPEG com-
pression, and non-linear filtering, exhibit distinctive patterns
in their EFRs. Theoretical reasoning supported by experimen-
tal results also verifies the effectiveness of this method for
identifying the type of a tampering operation.
This paper is organized as follows. We define the Empir-

ical Frequency Response (EFR) in Section 2 and show dis-
tinctive EFRs. The results on using the EFR as a tampering
analysis tool are discussed in Section 3. Since the EFR is,
in fact, not readily available in practice, we discuss methods
to estimate EFR in Section 4 just based on the output image,
and propose approaches to improve the accuracy. We con-
clude this paper in Section 5.

2. EMPIRICAL FREQUENCY RESPONSE FOR
IDENTIFYING TYPE OF TAMPERING

It is well known that linear and shift-invariant (LSI) systems
can be characterized by their frequency responses. For ex-
ample, a 3 × 3 average filter has a 2-D sinc-like frequency
response as shown in Fig. 1(a) and the frequency response of
an identity system whose output equals to the input is flat.
However, image processing operations are often non-LSI and
input-independent frequency response is not defined for such
systems. In this paper, we represent such manipulations using
the Empirical Frequency Response (EFR) [7]. For different
types of tampering, we show that the EFR is consistent and
can therefore be employed to identify manipulation type.
The EFR of a systemHX(ω) is defined as the ratio of the

Fourier transform of the system output Y (ω) and the Fourier
transform of the input X(ω), i.e., HX(ω) = Y (ω)

X(ω) . In case
of digital images, we replace the Fourier transform by dis-
crete Fourier Transform (DFT), but the idea of EFR remains
the same. The EFR is input-dependent for non-LSI systems,
and when the system is LSI, it coincides with the frequency
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(a) 3 × 3 average filtering (b) downsampling by 2

(c) JPEG QF=60 (d) 3 × 3 median filtering

Fig. 1. Typical EFRs for four different manipulations. The EFR
is shown in a log scale with the center part representing the low-
frequency region.

response. Fig. 1 illustrates typical EFRs for different manipu-
lations including (i) downsampling by 2 (denoted by ↓ 2; the
notation ↑ is similarly for upsampling); (ii) JPEG compres-
sion with quality factor (QF) 60, and (iii) 3× 3 median filter-
ing (a popular non-linear filter). We obtain similar or “con-
sistent” EFRs for a majority of photographs in our database;
this suggests that even though the EFRs are signal dependent
for non-LSI systems, the differences are often minor and sim-
ilar manipulations produce similar EFRs. In the following,
we analyze the reasons behind this consistency for operations
such as resampling, JPEG compression, and median filtering.

2.1. EFR Consistency for Resampling Operations

Manipulations such as resampling change the original image
structure, especially among camera-captured images. This is
because most digital cameras adopt a color filter array (CFA)
to capture the information about the real-world scene. The
CFA consists an array of color sensors, each of which cap-
tures a corresponding color of the real-world scene at an ap-
propriate pixel location. After sampling, only one color is
recorded at each pixel location, and interpolation is performed
to obtain the remaining color components.
This implicit structure from sampling and interpolation

would be destroyed by resampling. For illustration, let us con-
sider a 1-D case with x(n) denoting the interpolated camera
output, and y(n) representing the result after downsampling
x(n) by 2. We assume that x(n) is interpolated such that each
odd entry in x(n) is the linear combination of its two neigh-
boring entries, i.e., x(2n + 1) = 1/2[x(2n) + x(2n + 2)].
Under this assumption, we can derive the EFR to be

HX(ω) =
1

1 + cosω︸ ︷︷ ︸
camera factor

B(ω)

B(2ω)︸ ︷︷ ︸
content factor

. (1)

Here, B(ω) denotes the discrete time Fourier transform
(DTFT) of b(n) = x(2n). Since 1+cosω ≥ 1 for 0 ≤ ω ≤ π

2
and 0 ≤ 1 + cosω ≤ 1 for π

2 ≤ ω ≤ π, the magnitude of
the “camera factor” in (1) is smaller for 0 ≤ ω ≤ π

2 and is
larger for ω close to π. In contrast to the camera factor in
(1), the content factor in (1) is dependent on the input signal.
For typical values of b(n) sampled from a natural images, the
content factor is bounded and follows a similar trend across
different images. Therefore, HX(ω) is primarily determined
by the signal-independent camera factor and, thus is con-
sistent across a gamut of natural images. This analysis also
reveals that for most CFA-interpolated photographs, higher
and lower bands in the EFR would be strengthened and weak-
ened, respectively, after direct downsampling. Such changes
can be observed in Fig. 1(b).
Resampling by a generalL/M factor can also be analyzed

in a similar manner. In this case, we can decompose the re-
sampling operation into the cascade of an upsampler, ↑ L, a
low-pass filter F (ω), and a downsampler, ↓ M , and the EFR
can be derived to be

HX(ω) ≈
1

M
F

( ω

M

) 1 + cos(Lω
M

)

1 + cosω︸ ︷︷ ︸
camera factor

B(2Lω
M

)

B(2ω)︸ ︷︷ ︸
content factor

, 0 ≤ ω ≤ π.

The EFR is this case can be again decomposed into signal-
independent and signal-dependent factors. By an argument
similar to that for direct downsampling by 2, we can show
that EFR of a general resampling operation is consistent.

2.2. EFR Consistency for JPEG and Median Filtering

JPEG compression is done through quantization of the block-
based (usually 8 × 8 or 16 × 16) discrete cosine transform
(DCT) coefficients. Because the quantization steps for low-
frequency coefficients are usually small, JPEG compression
tends to preserve the low-frequency components, but for high-
frequency bands, large quantization steps have the effect of
destroying image datails. The blocking effect causes discon-
tinuity across block boundaries, particularly in the vertical or
horizontal directions. Combining these factors, the EFR of
JPEG compression is expected to have values close to 1 (or 0
in the log scale) in the low-low frequency region, smaller val-
ues in high-high frequency bands due to loss of image detail,
and larger values in the low-high and high-low bands due to
blocking artifacts as is observed experimentally in Fig. 1(c).
Median filtering is known to have a frequency response

similar to that of an average filter for frequencies lower than
2π/α, where α is the filter order [7]. Outside this region,
some high-frequency components are retained to preserve the
signal sharpness and some others are weakened as shown in
the example in Fig. 1(d). In the next section, we build upon
our observation on the EFR consistency across different tam-
pering operations and present a framework for determining
the type of tampering operations.
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3. TAMPERING OPERATION ANALYSIS USING EFR

Experiment Setup and Feature Selection: In this section,
we study the performance of EFR in characterizing different
types of tampering operations. As demonstrated in Section
2, the EFR is a function of the tampering operation, the cam-
era used, and to some extent dependent on the nature of the
input image for non-LSI systems. For example, in the case
of resampling, color interpolation coefficients and the low-
pass filter are usually a function of the camera and may vary
among different camera models. In order to take the effect
of the camera into consideration, we employ a data set con-
taining six cameras (Canon PowerShot A75, FujiFilm FinePix
S3000, Sony CyberShot DSC P72, Minolta DiMage S304,
Epson PhotoPC 650, and Fujifilm FinePix F31fd) in our ex-
periments with forty photographs from each camera.
We consider 16 types of manipulations, including resam-

pling, LSI filtering, non-LSI filtering, compression, and a rep-
resentative point operation. The settings are: (O1) ↓ 2, (O2)
↓ 4, (O3) ↓ 2 by the MATLAB function imresize with default
parameters, (O4) ↑ 2 by imresize, (O5) ↑ 1.5 by imresize,
(O6-O7) 3 × 3 and 5 × 5 average filtering followed by ↓ 2,
(O8-O11) 3 × 3, 5 × 5, 7 × 7, and 9 × 9 average filtering,
(O12-O13) 3×3 and 7×7median filtering, (O14-O15) JPEG
QF=60 and 80, (O16) histogram equalization.
We compute EFRs by extracting two corresponding 256×

256 blocks from the input and output images, and use the
fixed-sized discrete Fourier transform (DFT) to approximate
the DTFT. For resampling operations that change the image
sizes, we apply appropriate zero padding in spatial domain
to interpolate the frequency components. We pre-process the
EFRs by average filtering to reduce the effects of noise, and
reduce their dimensionality by first donwsampling it to size
64 × 64 and then by applying Principal Component Analysis
(PCA) to produce 8 features per image. The dimension 8 is
selected experimentally; the performance begins to degrade
as more features are included.

Consistency among EFRs: Fig. 2 plots the 2-D principal-
component projections of the EFRs for different tampering
operations. We notice from Fig. 2(a) that operations such as
↓ 2 and 3 × 3 average filtering exhibit strong inner-operation
consistency with the features forming very tight clusters.
The effect of cameras can be studied by capturing the

same content using different cameras and examining the
consistency of the EFR for different tampering operations.
Fig. 2(b) shows the 2-D projections of EFRs from two cam-
eras of two post-camera manipulations, namely, 7×7median
filtering and JPEG compression with quality factor 80. We
see from the figure that the features form four small clusters,
but those which belong to the same operation are much closer.
This is another level of EFR consistency but still justifies our
choice of employing EFRs for tampering type identification.
The EFRs of some operations may have higher depen-

dences on the inputs and thus can be expected to have larger
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Fig. 2. Plots showing the 2-D projection of the EFR for (a) down-
sampling and average filtering, (b) median filtering and JPEG com-
pression across two different cameras (denoted by Cam1 and Cam2),
(c) histogram equalization for which different markers represent dif-
ferent cameras, and (d) different implementations of ↓ 2.

variations; histogram equalization shown in Fig. 2(c) is a rep-
resentative example. Such variation reduces the consistency
in EFR. Nevertheless, the EFR can be employed for identify-
ing the manipulation type as long as the EFRs of considered
operations do not occupy the same region in the feature space.
We also find that the EFRs in the feature space can reveal

the intrinsic operation similarities among operations. For ex-
ample, Fig. 2(d) compares three possible implementations of
↓ 2: (O1), (O3) and (O7), which shows that (O3) is closer to
(O1) rather than (O7), suggesting that imresize is more simi-
lar to direct ↓ 2 and the low-pass filtering is not obvious.

Identifying Tampering Type using EFR: Now, we examine
the classification performance using the EFR as features. We
employ Gaussian Mixture Model (GMM) to learn each cate-
gory and classify the EFR based features using a Maximum-
Likelihood (ML) approach. We randomly employ thirty train-
ing photographs from each camera for training the classifier
and use the remaining photographs for testing, repeating this
process for twenty times to obtain the average performance.
We group the 16 operations into 6 categories: (C1) ↓ 2,

↓ 2 by imresize, ↓ 4, 3 × 3 and 5 × 5 average followed by
↓ 2, (C2) ↑ 2 and ↑ 1.5 by imresize, (C3) 3 × 3, 5 × 5,
7 × 7, 9 × 9 average, (C4) 3 × 3 and 7 × 7 median filtering,
(C5) JPEG QF=60 and 80, and (C6) histogram equalization.
Such a grouping partitions operations into categories consis-
tent with signal-processing knowledge. Table 1 shows the
classification performance using the 2-component ML-GMM
approach. The average accuracy is 95.9% suggesting that the
EFR can discriminate between types of tampering operations.
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Table 1. Confusion matrix with the Original EFR.
% 1 2 3 4 5 6
1 93.2 0.6 0.3 5.2 0.5 0.3
2 3.1 96.1 0.0 0.1 0.7 0.0
3 1.2 0.0 98.8 0.0 0.0 0.0
4 6.7 0.0 0.0 92.2 0.6 0.4
5 1.9 0.3 0.0 1.3 95.5 1.0
6 0.2 0.0 0.0 0.1 0.1 99.7

Table 2. Confusion matrix with the Estimated EFR.
% 1 2 3 4 5 6
1 79.4 1.1 0.4 6.9 4.0 8.2
2 3.5 95.7 0.0 0.7 0.2 0.0
3 0.6 2.8 96.3 0.2 0.0 0.0
4 5.6 0.0 0.0 89.5 0.5 4.4
5 7.6 0.0 0.1 1.6 75.4 15.3
6 6.0 0.0 0.0 10.3 12.1 71.7

4. ESTIMATING EFR BY BLIND DECONVOLUTION

In most applications involving tampering detection, we do
not have access to the camera output (namely, the system in-
put) and the EFR of the system cannot be readily determined.
To address this problem, in our work, we estimate the LSI
component of the EFR using the iterative blind deconvolution
procedure described in [6], which is only briefed here due
to space limit. The iterative blind deconvolution approach
works by repeatedly applying known constraints in the pixel
domain and the Fourier domain. The pixel domain constraints
include the real-valued, boundedness, and color interpolation
constraints and Fourier domain constraints [6].

Experimental Results with Estimated EFR: We compare
the classification performances of the original EFR and the es-
timated EFR. Table 2 shows the confusion matrix for the esti-
mated EFR using two-component ML-GMM. We notice that
the classification accuracy with the estimated EFR is around
10% to 20% lower for certain manipulation categories com-
pared with the corresponding results obtained with the origi-
nal EFR reported in Table 1. Nevertheless, we can still differ-
entiate categories using the estimated EFR with an accuracy
close to 84.7%, suggesting that the estimation is effective.
We also examine the performance of the single compo-

nent ML-GMM classifier, and notice that while the classifica-
tion accuracies for (C2) to (C5) still remain the same, those
for (C1) and (C6) reduce by around 10%. This suggests that
(C1) and (C6) form loose clusters in terms of the estimated
EFR. (C1) is loose since it is a collection of several different
downsampling operations and each of them may have slightly
different characteristics. We remark that operations grouped
together based on intuitive signal processing understanding
(our C1 to C6) may not actually be intrinsically similar. (C6)
is loose due to the content dependence and the larger varia-
tion discussed in Section 3. With the imperfect estimates for
EFRs, the large variation of (C6) incurs overlaps in the feature
space, and thus lower the accuracy.

Multi-block Fusion: As discussed above, the EFR de-
pends both on the camera and the image content. Such
dependence is not desired since it lowers the inner-operation
consistency. In this part, we introduce multi-block fusion
as a possible approach to alleviate these problems. As-
suming that the whole photograph or a certain significant
portion of it undergoes the same operation, we can fuse
evidence from more than one block to jointly determine
the manipulation type. We adopt the naı̈ve Bayes classifier
which assumes that each block of the total N blocks is in-
dependent, and the a posteriori probability can be written as
P (Ci|F1, . . . , FN ) ∝

∏N

j=1 P (Fj |Ci), where Ci is the ith
category, Fj is the estimated EFR of the jth block. Using the
two-component GMM to model P (Fj |Ci), our results show
that multi-block fusion improves the classification accuracy
from 84.7% to 93.0% with three blocks considered together.

5. CONCLUSIONS

In this paper, we introduce the Empirical Frequency Response
(EFR) as a universal descriptor for digital tampering oper-
ations. We find that many LSI and non-LSI operations ex-
hibit consistencies in the EFR, and therefore the EFR can be
utilized to identify tampering operations when the input and
output of the tampering module are known. Our results in-
dicate that the proposed EFR based features can classify six
categories of tampering with an accuracy of 95.9%. In sce-
narios where the system input is not available, we show that
EFR can still be estimated just based on the output data, and
used for tampering identification with an accuracy of 84.7%;
which can be further improved to 93.0% by multi-block fu-
sion. Experimental results supported by theoretical reasoning
demonstrate the effectiveness of the proposed approach. Fu-
ture work would include examining more types of tampering
operations and modeling all factors that influence the EFR.
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