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ABSTRACT

Photorealistic images can now be created using advanced techniques
in computer graphics (CG). Synthesized elements could easily be
mistaken for photographic (real) images. Therefore we need to dif-
ferentiate between CG and real images. In our work, we propose and
develop a new framework based on an aggregate of existing features.
Our framework has a classification accuracy of 90% when tested on
the de facto standard Columbia dataset, which is 4% better than the
best results obtained by other prominent methods in this area. We
further show that using feature selection it is possible to reduce the
feature dimension of our framework from 557 to 80 without a sig-
nificant loss in performance (< 1%). We also investigate different
approaches that attackers can use to fool the classification system,
including creation of hybrid images and histogram manipulations.
We then propose and develop filters to effectively detect such at-
tacks, thereby limiting the effect of such attacks to our classification
system.

Index Terms — graphics, forgery, authentication, hybrid images,
histogram manipulation

1. INTRODUCTION AND RELATED WORKS

Media that include photos, audios and videos could be forged to de-
ceive viewers for commercial and political reasons. Forgeries vary
in the scale and scope of their applications. In this paper we are
interested in forgeries where photorealistic computer graphics (CG)
images are used as replacement for photographic (real) images. Re-
cent advances in computer graphics make it possible to create mod-
els that are physically accurate without visual artifacts and lighting
inconsistencies. Also, with the help of advanced image editing soft-
ware like Adobe Photoshop, computer generated images look very
photorealistic. Therefore, to prevent image forgeries and to verify
the authenticity of an image, it is of crucial importance to differen-
tiate between computer graphics and real images. A brief survey of
prior related works sheds light on different techniques which aim at
differentiating CG from real images [1, 2, 3, 4]. Ianeva et al. [5] pro-
pose features for differentiating cartoon from real images with an ac-
curacy of 94%. Their features are prominently based on histograms,
including color and edge histograms, average saturation and thresh-
old brightness. Their approach has been extended for classifying CG
from real images with an accuracy of 72% on the Columbia dataset
[3]. Tsong et al. [2] have developed physics motivated features for
distinguishing CG and real images. They identify features based on
the scene-characteristics of CG images like its smooth nature, sim-
plified geometry and absence of natural statistics. They further in-
clude features based on capturing-device characteristics, by targeting
the differences in the post-processing process of CG and real images.

Their classification accuracy is 83% on the Columbia dataset. Chen
et al. [1] develop a method using statistical moments of wavelet
coefficients in the HSV color space with an accuracy of 82%. The
methods described earlier deal with different properties which dif-
ferentiate CG from real images. For example, cartoon features focus
on properties of CG which are cartoonic, the moment-based feature
focuses on the derivatives of histogram of an image, physics features
focus on the physical attributes which separate real images from CG.
This motivates us to build a framework by combining the prominent
features from existing methods together with the texture interpola-
tion features we propose in this paper. Our framework based on
the aggregate set achieves 90% classification accuracy with 557 fea-
tures. These results are 4% better than the best results from the ex-
isting methods (which are based on feature differences between CG
and real images, and not based on capturing device characteristics).
Furthermore, there is little prior work on studying attacks against
such classification systems. This motivates us to investigate possible
strategies that an attacker can use to deteriorate the performance of
the classification system. We further identify features which resist
such attacks.

2. FEATURE SELECTION

In addition to the existing features, our framework consists of a new
feature based on texture interpolation for classifying CG from real
images. Textures in CG undergo transformations such as scaling,
rotation, affine transforms, etc. These transformations introduce pe-
riodic correlations in an image. In general, periodic correlations are
observed in images which are resampled [6]. However, CG con-
tains several textures which are duplicated and resampled by differ-
ent amounts depending on factors including size of object, orienta-
tion, position in the scene, etc. These different resamplings intro-
duce several distinctive periodic correlations. The presence of many
distinct periodic correlations in an image can be used to identify an
image as CG. In order to capture the different periodic correlations in
an image, we segment the image to rectangular tiles of equal sizes.
We assume that the textures resampled are large enough that there
exists a minimum of two tiles containing textures resampled at dif-
ferent amounts. We use the method developed by Popescu et al. [6]
to obtain the probability map depicting the periodic correlations be-
longing to each tile. We model the different periodic correlations of
the whole image by local patch statistics of the probability map of
an image (refer [2] for the destination of local patch statistics fea-
tures). We further capture the periodic correlations caused by mo-
ments of characteristics functions of the probability map and its pre-
diction component. In general, the prediction error component and
the wavelet transforms of images capture their spatial correlations.
However, in the case of the probability map the spatial neighborhood

1513978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



of a pixel specifies the periodic correlations present in them, hence
the moment-based features are capable of capturing the periodic cor-
relations caused by texture resampling. The normalized moments of
the characteristic functions used in the moment-based method [1] are
defined as

where ϕ(w) is the characteristic function value at frequency w, n is
the moment order and N is the range of the histogram. The char-
acteristic function ϕx(w) of the probability density function f(x) is
nothing but the complex conjugate of its Fourier transform F (w)

Further, the prediction error image is the difference between the
original image and its predicted version (predicted based on its
neighbors) [7]. The prediction algorithm used by the moment-based
method is

where x̂ is the predicted value of x. The neighborhood of x is given

by the ordering
x b

a c
. We achieve a classification performance

of 78% using our texture interpolation method. We further evaluated
the individual performance of all the features used for classifying
CG from real images (please consult the original papers [1,2,5] for
detailed descriptions of features). Our experimental results suggest
that, only the following features give a classification accuracy above
60% on the Columbia dataset. The rest of the features proposed in
the literature can achieve no more than 60% in classification accu-
racy on the Columbia dataset:

• color histogram feature from the cartoon set of features (69%
accuracy with 45 features) [5],

• moment-based features in the YCbCr color space (86% accu-
racy with 234 features) [1],

• local patch statistics features from the physics set of features
(69% accuracy with 96 features) [2], and

• features based on texture interpolation (78% accuracy with
182 features).

We include the above list of features in our framework for classi-
fying CG from real images. The color histogram and local patch
statistics features give a classification performance of 69% and 70%,
respectively. For the moment-based features, Chen et al. predicted a
better performance using YCbCr color space when compared to their
results in the RGB and HSV color spaces included in their paper. In-
deed, our experimental results indicate that the YCbCr color space
performs with an accuracy of 86%, better than 84% with HSV and
81% with RGB color spaces. We further obtain variations of up to
8% using other color spaces. The aggregate set of features achieve a
classification accuracy of 90% using the Columbia dataset. We apply
the greedy hill-climbing algorithm for feature selection on the aggre-
gate set to reduce its dimension. The results in figure 1 suggests that
we could achieve 90% classification performance with less than 1%
variation using as few as 80 features compared to the original 557

Fig. 1. Feature dimension vs classification accuracy

features in the aggregate set. In the reduced set containing 80 fea-
tures, 44 are from the moment-based method, 24 from our texture
interpolation method, and 6 each from color histogram and patch
statistics. Our greedy approach is not optimal for obtain in maxi-
mum performance with a reduced set of features. However we have
demonstrated that it is possible to reduce the feature dimension of
the aggregate set without loss of classification accuracy.

3. EFFECT OF MALICIOUS MANIPULATIONS ON
CLASSIFICATION PERFORMANCE

In this section, we are concerned with forgery techniques wherein
the contents of an image are modified purposefully in order to forge
its authenticity. Especially we focus on histogram manipulations
since they alter the histogram of an image which deeply affects the
moment-based techniques which is the lifeblood of our framework.
Further, hybrid images provide a potent threat since they combine
the features of both CG and real images, thereby limiting the ability
of our framework to identify them. Though we could envisage other
possible fronts for forgeries, we focus our discussions on these since
they have favorable properties such as trivial in implementation, vi-
sually indiscernible, and mainly because they are derived based on
the discriminating features themselves and hence potentially could
affect our framework the most. Moreover, unintentional manipula-
tions like compression, filtering, changing the contrast of the im-
age, etc. could affect the features extracted for classification. Since
these manipulations directly affect the features which differentiate
CG from real images it is beyond the scope of this paper to address
their effect on image authentication. However, we acknowledge that
this raises an important issue for image authentication in general and
in future hope to increase the robustness of our framework.

3.1. Hybrid images

Hybrid images are generated by compositing CG and real images.
Designers often introduce real world elements in graphics for tex-
turing. For example, it is possible to make a CG image look more
realistic by applying textures of real world objects like sky, water,
grass, etc. Hybrid images cannot be grouped either with CG or real
images since they contain features from both classes. Hence one
cannot predict if a hybrid image would be classification as CG or
real image. Though we do not aim at identifying hybrid images di-
rectly, we are interested in them in the context of image forgery. A
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malicious attacker could fool our classification system by introduc-
ing CG/real patches to a real/CG image affecting its classification
result. Hence hybrid images present an obstacle to our classifica-
tion system. For our experiments, we generated hybrid images by
compositing CG and real images from the Columbia dataset. We
produced 800 hybrid images for our experiment. 400 of them have
75% real image contents and 25% CG contents and the rest with 25%
real and 75% CG contents. The hybrid images are created through
image splicing, where the 25% CG/real image contents are pasted
onto an image which is 100% real/CG. We train our classification
on the training set consisting of the original 1600 images from the
Columbia dataset. We test our classification on these 800 hybrid
images. The classification results are as follows. We achieve only
77% accuracy in identifying the majority 75% contents in the hy-
brid images i.e., images contains 75% CG/ 75% real contents are
classification as CG/real images with 77% accuracy. The classifi-
cation accuracy is reduced by 12% for hybrid images compared to
the Columbia dataset containing CG and real images. Please refer to
figure 2 for the results. To resist such attacks and minimize the im-
pact of such hybrid images on the performance of our systems, we
propose a two-class classifier to differentiate between pure CG/real
images and hybrid images. Based on the feature set that we selected
in section 2, we test the performance of each set of features on de-
tecting hybrid images and the results are shown in figure 2. Our
results show that it is possible to model the traits of the hybrid im-
ages. The local patch statistics feature performs the best with 73%
detection rate. The aggregate set of features performs with 75% ac-
curacy. In our proposed framework, we use local patch statistics
features for detecting hybrid images since it achieves similar perfor-
mance to the aggregate feature set using a much smaller feature set
(96 features in local path compared with 557 features in the aggre-
gate set). The superior performance of local patch statistics features
could be explained as follows: Local patch statistics model the joint
distribution of patch structures in an image. Even though both CG
and real patches are present in a hybrid image, the joint distribution
of patch structures of CG and real images are different from the indi-
vidual distributions of CG or real images. Hence hybrid images have
properties which are unique when compared to CG or real images.
This also explains the hybrid image detection rate of 73%, which
is similar to the CG vs. real image classification rate of 69% for
patch features. It is worthy mentioning that although the moment-
based features have superior performance with 86% accuracy when
differentiating CG from real images, their performance on detecting
hybrid images is only 67%. This is due to the fact that the hybrid
images contain high correlations due to the presence of real image
patches. These correlations are measured by the prediction error
component of moment based features. Therefore, for moment-based
features, hybrid images share their properties with real images, re-
sulting in poor detection performance.

3.2. Histogram manipulation

Histogram manipulation is a commonly available technique in many
image editing software to manipulate the brightness or contrast of
an image. In the context of image forgery, an attacker would like
to manipulate the histogram of CG/real image to falsify its authen-
ticity as real image/CG. For example, given a CG and a real image
we would like the CG image to have the histogram of that of the
real image. Since our framework contains techniques like color his-
togram and moments of characteristic functions which are based on
the histogram of the image, we expect them to be affected by this
operation. We define the success of histogram manipulation attacks

Fig. 2. The barchart illustrates the following results: Classification
results for the hybrid image dataset with the classifier trained on
the original Columbia dataset; Classification results on the original
Columbia dataset; and Detection results for the hybrid images.

by the extent of decrease in the classification performance of our
classifier. Also manipulations should not leave any perceptually no-
ticeable traces of forgery. It should be noted that even though the
forged image created has the histogram of the target image, wavelet
transforms of level 1, 2, etc, of the target and forged images do not
contain identical histograms. This is because the wavelets created
depend on the spatial arrangement of pixels in an image. When
modifying the pixel intensity values, histogram manipulation only
considers the current pixel but not its neighbors. Since the visual
contents are different between the source and target image pairs, the
local arrangement of pixels are different. Therefore, histogram ma-
nipulations can only change the histogram of the forged image to that
of the target image, but not the wavelet transforms of the forged im-
age to the corresponding wavelet transforms of the target image. The
visual quality of the histogram manipulated image depends on the
target histogram chosen for manipulation. From the several choices
present for the target image, we choose a target histogram which is
similar to that of the source image. Earth movers distance (EMD)
is used as a similarity metric. If the target histogram is dissimilar
to that of the source image, the resulting histogram manipulation
could possibly be identified on observation. In this paper, we use
the YCbCr color space for manipulations. The Columbia dataset
containing 1600 images is used for training our classification sys-
tem. The testing is undertaken on 400 histogram manipulated images
(200 real images with the histograms of CG, and 200 CG with the
histograms of real images). The results are shown in Figure 3, and
we can see that the classification performance of the aggregate set
of feature drops by up to 30% under the histogram manipulation at-
tacks. Classification accuracy for the histogram manipulated images
and the original images are shown side-by-side for comparison. As
expected features based on the histogram of the image such as color
histogram features, the moment based features are greatly affected
by this manipulation. The application of histogram manipulation
leads to changes in the local pixel correlations present in an image.
This property is used in identifying the histogram manipulated im-
ages. We could use the following set of features for identifying local
pixel correlations in an image: prediction error, local patch statistics
and interpolation features. The moment-based features use predic-
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Fig. 3. The barchart illustrates the following results: Classification
results for histogram manipulated image dataset with the classifier
trained on original Columbia dataset. Classification results on the
original Columbia dataset. Detection results for histogram manipu-
lated images.

tion error to detect the high correlations present in the real images,
and they are used here for identifying histogram manipulation im-
ages. Please refer to figure 3 where results of detecting histogram
manipulations are shown. The moment-based features are success-
ful in detecting histogram manipulations with an accuracy of 99%.
We use the prediction error component of the moment-based features
in our proposed framework for detecting histogram manipulated im-
ages.

4. THE PROPOSED FRAMEWORK

Based on the classification results and our knowledge of possible
attacks against our classification, we propose a new framework for
differentiating between CG and real images. Refer to figure 4 for
an illustration of our framework. The framework consists of two
parts, forgery detection system and CG vs real classification system.
The purpose of the forgery detection system is to detect attempts by
malicious entities, including histogram manipulation and hybrid im-
age creation to manipulate the images used for classification. We
develop this forgery detection system to detect and filter forged im-
ages created by these attempts. We use the hybrid image detector
proposed in section 3.1 to identify hybrid images with an accuracy
of 73%, and the histogram manipulation detection filter proposed
in section 3.2 to detect histogram manipulation with an accuracy of
99%. Our framework offers the following benefits. It has a better
classification accuracy than all the individual methods. It contains
a forgery detection system, making it harder for an attacker to com-
promise. We need not have the same set of features for classification
and forgery detection. Hence it is possible to optimize either sys-
tem independently, without worrying about its effects on the other
system.

5. CONCLUSION

In this paper we proposed and built a framework based on the ag-
gregate set of features to achieve a classification rate of 90% on

Fig. 4. Framework for classifying CG and real images with forgery
detection filter.

the Columbia dataset. We have improved on the results using the
moment-based features suggested by Chen et al., which provides a
classification rate of 86% on the YCbCr color space. We analyze the
resistance provided by our framework from possible attacks includ-
ing histogram manipulation and creation of hybrid images. Both of
these attacks are very successful and decrease the accuracy of our
framework by around 30%. We are able to detect histogram manip-
ulated images at 99% accuracy, and hybrid images with 73% accu-
racy. We use these features as filters in building a forgery detection
system to prevent such manipulated images to be processed by our
classification system.
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