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ABSTRACT
In this paper, we present an improved method for detecting LSB
matching steganography in gray-scale image. Our improvements
focus on three aspects: (1) instead of using the amplitude of local
extrema of the image’s histogram in the previous work, we turn to
considering the sum of the amplitude of each point in the histogram;
(2) incorporating the calibration (downsample) technique with the
current method; (3) the sum/difference image (which is defined as
the sum or difference of two adjacent pixels in the original image)
is taken into consideration to provide additional statistical features.
Extensive experimental results show that the novel steganalyzer out-
performs the previous ones.

Index Terms— Information hiding, steganalysis, LSB matching

1. INTRODUCTION

Steganography is the art and science of secret communication. A
steganographic scheme thus embeds secret data in innocuous look-
ing cover data (e.g., digital images) so as not to arouse the third
party’s suspicion. On the contrary, the goal of steganalysis is to
detect whether a given medium has secret data in it. Furthermore,
steganalysis can serve as an effective way to judge the security of
steganographic techniques.

As two widely-used steganographic schemes for digital images,
LSB (least significant bit) replacement [1] and LSB matching (also
known as “±1 embedding”) [2] have advantages of high payload,
good visual imperceptibility and extreme ease of implementation.
The embedding procedure of LSB replacement is rather simple:
firstly, convert the secret data into a stream of bits; secondly, choose
cover pixels in a pseudo-random order generated by a shared se-
cret key; finally, replace the LSB of each selected cover pixel by
the corresponding secret data bit. For LSB matching, it is a minor
modification of LSB replacement: when the secret data bit does not
match the LSB of the cover image, 1 is either added to or subtracted
from the cover pixel value randomly. By exploring the embedding
asymmetry in LSB replacement, some recent work has shown that
one can effectively detect LSB replacement [3–5], even when the
embedding rate (secret data bits embedded per pixel) is rather low.
Nevertheless, the study on steganalysis of LSB matching is just in its
early stage. In fact, it has been proved that LSB matching is much
harder to detect than LSB replacement [6]. In this paper, we study
the steganalytic techniques and give an improved method for de-
tecting LSB matching. Some state-of-the-art and recently proposed
steganalyzers are briefly reviewed as below.

Existing steganalytic methods can be classified into two cate-
gories: targeted and blind (universal). The targeted steganalytic
methods aim to identify the presence of secret data embedded by
a specific steganographic scheme, while the blind steganalytic meth-
ods are independent of the steganographic scheme. Usually, for a
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specific steganographic scheme, the blind steganalyzers are less effi-
cient than the targeted steganalyzers. In [7], Harmsen et al. proposed
to use the HCF COM (center of the mass of the histogram charac-
teristic function) for the detection of additive noise based steganog-
raphy including LSB matching. In [6], incorporating the HCF COM
and the calibration (downsample) technique, Ker improved Harmsen
et al.’s work by proposing some targeted steganalyzers for detecting
LSB matching. Recently, Ker’s calibration based steganalyzers were
further studied by Li et al. [8]. The authors suggested calculating
the calibration based steganalyzers on the difference image, which is
defined as the difference of the adjacent pixels in the original image.
In [9], Goljan et al. introduced the so-called WAM (wavelet abso-
lute moment) blind steganalyzer, which was reported to outperform
Ker’s steganalyzers in [6], especially for compressed images. As
most blind steganalyzers (e.g., [10, 11]), WAM estimates the stego
noise by applying some denoising techniques. In [12], based on the
statistics of ALE (amplitude of local extrema) of image’s histogram,
Zhang et al. described a targeted steganalyzer to detect LSB match-
ing. The authors observed that the ALE would decrease after LSB
matching embedding. Cancelli et al. extended Zhang et al.’s work
to the two dimensional histogram [13]. They demonstrated experi-
mentally that the novel steganalyzer was much more reliable than the
original one described in [12], the WAM, and the calibration based
steganalyzers in [6].

Based on the methods proposed in [12, 13] and the calibration
technique originally introduced in [6], this paper presents an im-
proved method for detecting LSB matching, which can remarkably
increase the detection performance. In Section 2, we give a brief
description of Zhang et al.’s work [12] and Cancelli et al.’s work
[13]. Then in Section 3, we present our improvements on the ALE
based steganalyzers. Other than using the sum of histogram’s ALE
in [12,13], we consider the sum of the amplitude of each point in the
histogram (one dimensional and two dimensional) instead. More-
over, the calibration technique and the utilization of sum/difference
image are taken into consideration. Extensive experimental results
are shown in Section 4. The final conclusions are drawn in Section 5.

2. THE ALE BASED STEGANALYZERS

Let Ic be a gray-scale image, Is be its stego image by LSB match-
ing with embedding rate α, hc and hs be the histograms of Ic and
Is, respectively. As a consequence of LSB matching embedding,
we know that hs is a regularization of hc: hs = fα ∗ hc, where
the convolutional kernel fα is the distribution of embedding noise:
fα(0) = 1 − α/2, fα(1) = fα(−1) = α/4. In [12], the au-
thors proved that hs(n) < hc(n) when n is a local maximum of
hc, and the inverse is true for local minimum, where the local ex-
tremum n is defined by: hc(n) > hc(n±1) (for local maximum) or
hc(n) < hc(n ± 1) (for local minimum). That is to say, after LSB
matching embedding, the local maxima of an image’s histogram will
decrease and the local minima will increase. Based on this obser-
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vation, Zhang et al. pointed out that the ALE would reduce after
LSB matching embedding. Then they proposed to use the following
quantity

D(I) =
X

n∈E1

|2h1(n) − h1(n + 1) − h1(n − 1)| (1)

as a discriminant to classify images as cover or stego, where E1 is
the set of local extrema of h1, h1 is the histogram of the observed
image I . Here we use subscript “1” to indicate the one dimensional
(1-D, in brief) case. As expected, experimental results have shown
that D(Is) < D(Ic) holds for most images. In [13], Cancelli et al.
improved Zhang et al.’s work, they slightly modified the discrimi-
nant D(I) and extended the ALE to the two dimensional (2-D, in
brief) histogram. Firstly, to remove the border effect (note that the
0-valued pixels will always increase and the 255-valued pixels will
always decrease), D(I) was partitioned into two parts:

A1(I) =
X

n∈E1∩{3,4,...,252}
|2h1(n) − h1(n + 1) − h1(n − 1)|

and

d1(I) =
X

n∈E1∩{1,2,253,254}
|2h1(n) − h1(n + 1) − h1(n − 1)|.

Secondly, noting that the change of 2-D histogram can also be mod-
eled as a convolution procedure (from cover to stego), the authors
considered the 2-D histogram h2 and defined the following features:

A2(I) =
X

n∈E2

˛̨
˛4h2(n) −

X
p∈N

h2(n + p)
˛̨
˛

and

d2(I) =

255X
k=0

h2(k, k),

where N = {(0,±1), (±1, 0)} and E2 ⊂ {1, 2, ..., 254}2 is the
subset of local extrema of h2 which satisfies the symmetrical prop-
erty: (n1, n2) ∈ E2 ⇔ (n2, n1) ∈ E2. Here, similarly to the 1-D
case, the local extremum of h2 is defined by: h2(n) > h2(n + p),
∀ p ∈ N (for local maximum) or h2(n) < h2(n + p), ∀ p ∈
N (for local minimum). Finally, by considering the above men-
tioned 1-D histogram based features {A1(I), d1(I)} and the 2-D
histogram based features {A2(I), d2(I)} with four directions (hor-
izontal, vertical, main diagonal, and minor diagonal), the authors
used the 2 + 2 × 4 = 10 features and the FLD (Fisher linear dis-
criminant) to build a two-class classifier to distinguish cover images
from stego images.

3. THE IMPROVED STEGANALYZER

Before introducing our improvements on the ALE based steganalyz-
ers, we first point out that the local extrema of hc would change after
data embedding, i.e., the set E1 and E2 would vary when the cover
image turns into stego. Here is an example. The 512×512 gray-scale
image “Lena” has 67 local extrema for 1-D histogram. The number
of local extrema changes to 69, 66, 76 and 72 after data embedded
by LSB matching with embedding rate 0.1, 0.2, 0.5 and 1. The num-
ber of local extrema shared by the cover image and the stego image
is 59, 51, 50 and 26, respectively. Moreover, the same phenomenon
occurs for 2-D histogram. Thus the uncertainty of local extrema of
histogram can affect the detection performance. Since LSB match-
ing embedding leads to low pass filtering the intensity histogram,

Fig. 1. The calibration (downsample) technique involves in LSB
matching steganography.

the filtering operation will reduce the amplitude of each point of the
histogram, not only the extrema. Hence, based on the above discus-
sion, one natural modification of the discriminant D(I) defined by
Eq.(1) can be made as follows, in which we sum the amplitude of
each point in the histogram,

D1(I) =

254X
n=1

|2h1(n) − h1(n + 1) − h1(n − 1)|. (2)

The comparison of the detection performance of D(I) with D1(I)
will be reported later.

As mentioned in Section 1, the calibration (downsample) tech-
nique originally proposed by Ker is very useful for detecting LSB
matching [6]. The downsampled stego image can be regarded as the
stego image of the downsampled cover image by LSB matching with
a reduced embedding rate, thus the procedure of downsample can
reduce the embedding noise (see Fig.1). The fact was theoretically
illustrated by Ker [14] and Li et al. [8]. We omit the details here
due to the limitation of the space. Indeed, this technique can also
make contribution when combining with D1(I), i.e., we propose to
consider the following dimensionless quantity:

D2(I) =

P254
n=1 |2h1(n) − h1(n + 1) − h1(n − 1)|P254
n=1 |2eh1(n) − eh1(n + 1) − eh1(n − 1)|

, (3)

where eh1 is the histogram of the downsampled image eI , whose pixel
value is given by

eIi,j =
¨
(I2i,2j + I2i+1,2j + I2i,2j+1 + I2i+1,2j+1)/4

˝
. (4)

Fig.2 shows the comparison of the ROC (receiver operating char-
acteristics) curves for four different steganalyzers: (1) D(I), (2)
D1(I), (3) D2(I), and (4) {D1(I), D2(I)}. In the case (4), we use
{D1(I), D2(I)} as statistical features and put them in SVM (sup-
port vector machine) to build a two-class classifier. From this figure,
we can see that D1(I) performs a little better than D(I), and the
calibration based steganalyzer D2(I) can significantly improve the
detection performance as compared with its original (non-calibrated)
form D1(I). Finally, we can get the best detection performance
when combining D1(I) with D2(I). This primary experimental re-
sult verifies our aforementioned discussion. Here, we use 3000 un-
compressed images for testing, and the cover images are embedded
with maximal-length random data bits.

Now, we consider the 2-D histogram. We know that, the 2-D
histogram can reflect some relationship between two adjacent pixels,
but the data embedding procedure may destroy this relationship in
certain sense. The fact gives a clue to design steganalyzers, e.g., the
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Fig. 2. Comparison of ROC curves for 3000 uncompressed images.
The different curves stand for: D(I) (black, dotted), D1(I) (red,
solid), D2(I) (green, solid), and {D1(I), D2(I)} (blue, solid).

adjacency HCF COM [6]. Following the work of Cancelli et al., we
extend the 1-D histogram based statistical features D1(I) and D2(I)
to the 2-D case. We then define the additional second order statistical
features as below, in which we sum the amplitude of each point in
the 2-D histogram and incorporate the calibration technique:

D3(I) =
X
n∈M

λn

˛̨
˛4h2(n) −

X
p∈N

h2(n + p)
˛̨
˛ (5)

and

D4(I) =

P
n∈M λn|4h2(n) − P

p∈N h2(n + p)|P
n∈M λn|4eh2(n) − P

p∈N
eh2(n + p)|

, (6)

where M = {1, 2, ..., 254}2 is the index set,

λn =
1

1 + (n1 − n2)2
n = (n1, n2)

are weighted parameters which reflect the sparse intensity of 2-D

histogram, eh2 is the 2-D histogram of the downsampled image eI
which is defined by Eq.(4). The weighted parameters have been ex-
perimentally proved effective, and they can also be replaced by other
similar functional expressions.

Furthermore, we introduce the concepts of sum image and dif-
ference image. For an image I , the horizontal sum image Is is de-
fined by: Is

i,j = Ii,2j + Ii,2j+1, and the horizontal difference image

Id is defined by: Id
i,j = Ii,2j−Ii,2j+1+255, thus the pixel values of

Is and Id vary from 0 to 510. Similarly, one can define the vertical
sum and difference image. In [8], Li et al. suggested calculating the
calibration based steganalyzers on difference image. The reason is
that the difference image can better present the embedding noise as
compared with the original image when wrapped by LSB matching,
since the distribution of pixel value of difference image is rather con-
centrated and the maximal modification changes from 1 (for original
image) to 2 (for difference image) after data embedding. Sum and
difference images have also been proved experimentally to be obvi-
ously useful, so we take features from sum and difference image into
account.

According to the afore discussion, our novel steganalytic algo-
rithm can be described as follows.
Step 1: For a given image, calculate the sum image and the differ-
ence image in two directions (horizontal, vertical). Then we get to-
tally five images.

Step 2: For each image derived from Step 1, calculate its downsam-
pled image by Eq.(4), and get 1-D histogram and 2-D histogram in
four directions (horizontal, vertical, main diagonal, and minor di-
agonal) for the image and its downsampled image, then calculate
the features D1(I), D2(I), D3(I), and D4(I) according to Eq.(2),
Eq.(3), Eq.(5), and Eq.(6) for 1-D or 2-D histogram. Therefore we
arrive at a total of 5 × (2 + 2 × 4) = 50 features.
Step 3: Put the 50 features into the SVM classifier to get the result.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results of the proposed ste-
ganalyzer. First, we describe the image sets used in our experiments.
(1) Image Set 1 (IS-1): same as [6], we downloaded 3000 images
from the USDA NRCS Photo Gallery1. For testing, we resampled
each of them to the 1/3 of the original size (the size of the result im-
ages are about 700 × 500) and converted each image to gray-scale.
(2) Image Set 2 (IS-2): JPEG version of Image Set 1 with quality
factor 90. Then, we use SVM to train and test. We randomly select
1/4 of the image set (for cover and stego) to train, and use the rest to
test. The procedures are repeated 10 times for cross-validation and
the ROC curves are vertically averaged to obtain the mean perfor-
mance of the scheme. The overall performance of the steganalyzer
is then measured by computing the AUC (area under the ROC curve)
value. An AUC value close to 1 indicates excellent discrimination,
while a value close to 0.5 indicates poor discrimination. For exper-
iments, besides our steganalyzer (noted by S8), six targeted (noted
by S1, ..., S6) and one blind (noted by S7) steganalyzers are taken
into consideration, thus we consider the following steganalyzers:

(1) S1: Calibrated HCF COM [6],

(2) S2: Calibrated Adjacency HCF COM [6],

(3) S3: ALE based steganalyzer for 1-D histogram [12],

(4) S4: ALE based steganalyzer for 1-D and 2-D histogram [13],

(5) S5: the targeted steganalyzer proposed in [15],

(6) S6: Calibrated HCF COM calculated on difference image,
i.e., the steganalyzer Gps

64 introduced in [8],

(7) S7: WAM [9],

(8) S8: our novel steganalyzer.
As shown in Table.1, each column (except the first column) shows
the AUC values of the steganalyzers S1 ∼ S8 for a given image set
(the first row) at a given embedding rate (the second row). From
these experimental results, we can see that: (1) for uncompressed
and compressed images, our novel steganalyzer outperforms all the
state-of-the-art steganalyzers S1 ∼ S7; (2) especially, for com-
pressed images, the novel steganalyzer performs rather well even
when the embedding rate is low, e.g., we arrive an AUC value of
0.95 at an embedding rate 0.1.

Finally, to well illustrate the excellent performance of the novel
steganalyzer, we present the comparisons of the ROC curves in Fig.3
for the steganalyzers S4, S6, S7 and S8. It is obvious that the novel
one performs well while some other steganalyzers are ineffective.

5. CONCLUSION

In this paper, we investigated the ALE based steganalyzers proposed
in [12, 13], and gave an improved steganalytic method for detecting
LSB matching steganography in gray-scale image. By considering
the sum and difference image, summing the amplitude of each point
of histogram (1-D, 2-D) and employing the calibration technique,

1http://photogallery.nrcs.usda.gov
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Table 1. Comparison of the AUC values for different steganalyzers
on two image sets. Here, E-R means embedding rate.

Image Set IS-1 IS-1 IS-1 IS-2 IS-2 IS-2

E-R 1.0 0.5 0.2 0.5 0.2 0.1

S1 [6] 0.760 0.593 0.523 0.596 0.520 0.508

S2 [6] 0.758 0.604 0.525 0.702 0.538 0.507

S3 [12] 0.602 0.557 0.522 0.575 0.534 0.515

S4 [13] 0.827 0.673 0.555 0.922 0.763 0.619

S5 [15] 0.842 0.693 0.574 0.879 0.719 0.609

S6 [8] 0.833 0.725 0.584 0.962 0.858 0.714

S7 [9] 0.792 0.661 0.528 0.990 0.942 0.795

S8 0.907 0.789 0.639 0.995 0.982 0.950

the novel steganalyzer thus obtained outperforms the old ones. Ex-
tensive experimental results have shown that LSB matching can be
detected substantially with an embedding rate of 0.1 for compressed
images and 0.5 for uncompressed images. The previous work can
hardly reach such detection performance. Though LSB matching for
compressed cover can be easily detected even for a low embedding
rate, the detection for uncompressed cover is still a challenge for
steganalysts. For instance, the current steganalyzers can not give an
acceptable detection performance of LSB matching for the uncom-
pressed USDA NRCS Photo Gallery even when the embedding rate
is 1. Moreover, the proposed steganalyzer can be evidently applied
to the additive noise based steganography, then the further experi-
mental results are expected to verify its universality.
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[13] G. Cancelli, G. Doërr, I. J. Cox, and M. Barni, “Detection of
+-1 LSB steganography based on the amplitude of histogram
local extrema,” in Proc. of the IEEE ICIP, 2008, pp. 1288–
1291.

[14] A. D. Ker, “Resampling and the detection of LSB matching in
color bitmaps,” in Security, Steganography, and Watermarking
of Multimedia Contents VII, 2005, vol. 5681 of SPIE, pp. 1–15.

[15] F. Huang, B. Li, and J. Huang, “Attack LSB matching
steganography by counting alteration rate of the number of
neighbourhood gray levels,” in Proc. of the IEEE ICIP, 2007,
vol. 1, pp. 401–404.

1508


