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ABSTRACT

In this paper, we propose a blind and robust watermarking

method for 3D polygonal meshes by minimising the mean

square error between the original mesh and the watermarked

mesh under several constraints. We have formulated the

problem of assigning distortions to points in a 3D mesh

to a quadratic programming problem, so it can be solved

reliably and efficiently. Comparing with similar approaches

in [1], experiments indicate the advantages of our method in

resisting Gaussian noise.

Index Terms— 3D watermarking, Quadratic program-

ming

1. INTRODUCTION

Digital watermarking has become a widespread approach to

protect intellectual property rights since 1990’s. Although

many watermarking algorithms have been developed for im-

ages, audio and visual signals, the area of watermarking 3D

objects is not immensely studied. With the rapid progress of

3D technology in computer aided design, video games and

manufactural industry, the area of 3D watermarking has re-

ceived much attention in the past years, as can be seen in [2].

A 3D object is usually represented by a 3D mesh, with

points and connections in it. Schemes for watermarking 3D

meshes can be categorised into transform-domain and spatial-

domain methods. The transform-domain methods treat 3D

watermarking as a common signal processing problem. Regu-

lar signal processing conceptions, such as wavelet transform,

are implemented into the watermarking approaches [3]. For

the spatial-domain methods, the position of each point is

changed individually based on some kind of criteria. For

example, Benedens [4] proposed a watermarking scheme

based on modifying the histogram of surface normals. Be-

cause statistics is applied to the watermarking scheme, it is

sustainable to common watermarking attacks. Other local

statistics, such as the distributions of vertex norms and
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moments, are also used for watermarking 3D objects [1, 5].

Experiments have proved that histogram-based schemes can

resist common watermarking attacks except cropping.

However, most histogram-based algorithms are based on

heuristic approaches [1, 5, 6], which do not ensure global

optimisation of the watermarking process. In this paper, we

propose a histogram-based watermarking algorithm by glob-

ally optimising distortions between the watermarked mesh

and the original mesh, with several constraints to be satisfied.

We take similar approaches as in [1] to modify the distribution

of vertex norms, but our modification is executed by incor-

porating quadratic programming (QP) into the watermarking

scheme to minimise the mean square error (MSE) between the

original mesh and the watermarked mesh. Experiments indi-

cate that the proposed method is more sustainable to Gaussian

noise compared to other two methods in [1].

2. THE PROPOSED METHOD

In this section, we take the same notations and terminologies

as in [1] because our research work follows theirs.

Firstly, the Cartesian coordinates of a point (xi, yi, zi) in

the mesh are converted into spherical coordinates (ρi, θi, φi):

ρi =
√

(xi − xg)2 + (yi − yg)2 + (zi − zg)2

θi = tan−1 (yi − yg)
(xi − xg)

φi = cos−1 (zi − zg)
ρi

, i ∈ {0, 1, ...L − 1} (1)

where L is the number of points in the mesh, ρi is the ith
vertex norm, and (xg, yg, zg) is the mesh’s centre of gravity,

which can be calculated as:

xg =
1
L

L−1∑
i=0

xi, yg =
1
L

L−1∑
i=0

yi, zg =
1
L

L−1∑
i=0

zi (2)

Secondly, vertex norms are divided into N distinct bins

according to their magnitude. Each bin is used to hide one

bit of watermark, thus totally inserting N bits to the mesh. In
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this paper, we use ωn to represent the watermarking bit to be

embedded into the nth bin.

The maximal and minimal vertex norms, which are rep-

resented by ρmin and ρmax, are obtained in advance. Then

the nth bin Bn is defined as follows:

ρn,min = ρmin +
(ρmax − ρmin)

N
· n

ρn,max = ρmin +
(ρmax − ρmin)

N
· (n + 1)

Bn = {ρn,j |ρn,min < ρn,j < ρn,max} (3)

Here ρn,min and ρn,max are lower and upper boundaries of

the nth bin, and ρn,j is the jth vertex norm in the nth bin. In

this paper, we also use θn,j and φn,j to represent the spherical

angles of the jth vertex norm in the nth bin. In addition, we

use Mn to represent the number of vertex norms belonging to

the nth bin.

The third step is to map the vertex norms belonging to

the nth bin to the normalised range [0, 1]:

ρ̃n,j =
ρn,j − ρn,min

ρn,max − ρn,min

(4)

where ρ̃n,j is the normalised jth vertex norm in the nth

bin. The aim of the watermarking process is to slightly

change ρ̃n,j , so that the mean of the vertex norms is moved

to a specific area according to the watermarking bit to be

embedded. We introduce the normalised distortion for the jth

vertex in the nth bin, which is represented by Δρ̃n,j . Our

aim is to calculate the value of each Δρ̃n,j . After Δρ̃n,j

is obtained, we can calculate the new vertex norm ρ̃n,j

′
by

adding the previous one with its distortion:

ρ̃n,j

′
= ρ̃n,j + Δρ̃n,j (5)

After distortions are added to all vertices, we need to trans-

form the vertex norms to the original ones by equation (6),

which is an inverse transformation of equation (4).

ρ
′
n,j = ρ̃n,j

′ · (ρn,max − ρn,min) + ρn,min (6)

The watermark embedding process is completed by

converting the spherical coordinates to Cartesian coordinates.

Let ρ
′
i be the ith vertex norm. A watermarked mesh consisting

of points (x
′
i, y

′
i, z

′
i) is obtained by

x
′
i = ρ

′
i cos θi sin φi + xg

y
′
i = ρ

′
i sin θi sin φi + yg

z
′
i = ρ

′
i cos φi + zg (7)

In [1], the distortion Δρ̃n,j is obtained by modifying the

original vertex norm with a power function. However, there

is no mathematical proof that this function is optimal in as-

signing distortions in the mesh. In this paper, we change the

problem of assigning distortions to an optimisation problem,

with several constraints to be satisfied, thus providing a con-

crete mathematical background for norm-based watermarking

algorithms.

Our aim is to minimise the sum of squares of Δρ̃n,j ,

which is also the mean square error (MSE) between the

original 3D mesh and the watermarked mesh.

Minimise:

N−1∑
n=0

Mn−1∑
j=0

Δρ̃n,j
2

(8)

Three constraints are applied to ensure that the embedded

watermarking bits are correctly decoded later. The first con-

straint is to limit the transformed vertex norm ρ̃n,j

′
into the

range of [ΔG, 1 − ΔG]. Here ΔG is a parameter to control

the distance gap between adjacent bins. The points belonging

to the nth bin still belong to that bin after the watermarking

process, which is also implied in [1]. The constraint is given

as follows:

Constraint 1: For every n ∈ {0, 1, ..., N − 1} and

j ∈ {0, 1, ...,Mn − 1},

ΔG − ρ̃n,j ≤ Δρ̃n,j ≤ 1 − ρ̃n,j − ΔG (9)

We can see from equation (5) that ρ̃n,j

′
will be in the range

of [ΔG, 1 − ΔG] if the above constraint is satisfied.

The second constraint is directly derived from [1], which

ensures that the mean of the transformed vertex norms in

the nth bin is greater (or smaller) than a reference value when

the embedded watermarking bit ωn = +1 (or ωn = −1).

This constraint must be satisfied to ensure that the embedded

watermarking bits could be correctly extracted later. Our aim

is to make the mean of the vertex norms in the nth bin

μ̃n

′
=

1
Mn

Mn−1∑
j=0

ρ̃n,j

′
(10)

to be greater than 1/2 + α (or smaller than 1/2 − α) when

ωn = +1 (or ωn = −1). Here α is a strength factor to control

the watermarking effect. The second constraint is given as

follows:

Constraint 2: For every n ∈ {0, 1, ..., N − 1},

1. If ωn = +1, then

Mn−1∑
j=0

Δρ̃n,j > Mn · (1/2 + α) −
Mn−1∑
j=0

ρ̃n,j (11)

2. If ωn = −1, then

Mn−1∑
j=0

Δρ̃n,j < Mn · (1/2 − α) −
Mn−1∑
j=0

ρ̃n,j (12)
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By equation (5) and (10), it can be deduced that when

Constraint 2 is satisfied, the transformed vertex norm μ̃n

′
is

greater than 1/2+α (or smaller than 1/2−α) when ωn = +1
(or ωn = −1).

We proposed another constraint to guarantee that the cen-

tre of gravity of the watermarked mesh is the same as the

original one. If the centre of gravity (xg, yg, zg) has been

changed, by equation (1), the vertex norms ρi will also be

changed. Thus, the watermarking decoding process will fail

to extract the embedded watermarking bits. To avoid this, the

following constraint has to be satisfied:

Constraint 3:

N−1∑
n=0

Mn−1∑
j=0

Δρ̃n,j cos θn,j sin φn,j = 0

N−1∑
n=0

Mn−1∑
j=0

Δρ̃n,j sin θn,j sin φn,j = 0

N−1∑
n=0

Mn−1∑
j=0

Δρ̃n,j cos φn,j = 0 (13)

Thus, we have changed the problem of assigning distor-

tions to an optimisation problem, with a quadratic objective

function and three constraints. This is exactly a quadratic

programming problem. The theory of convex optimisation

guarantees that such kind of problems can be solved reliably

and efficiently, even in very large scales [7, Chapter 4].

The watermark decoding process is simple. Similar to

the embedding process, the centre of gravity is firstly calcu-

lated by equation (2), then the coordinates are converted to

spherical coordinates by equation (1). After obtaining the

maximal and minimal vertex norms, the vertex norms are

classified into N bins and mapped onto the range of [0, 1]
by equation (3) and (4). Then, the mean of the nth bin μ̃n is

calculated by equation (10), and compared with the reference

value 1/2. The watermark hidden in the nth bin, represented

by ωn, is extracted by

ωn =
{

+1, if μ̃n > (1/2)
−1, if μ̃n < (1/2) (14)

3. EXPERIMENTAL RESULTS

Simulations are carried out on the Stanford head model (Fig-

ure 1), which consists of 11703 vertices and 23402 triangles.

Our aim is to compare the noise resistance ability of the

proposed method with other two methods described in [1].

The authors of [1] have proposed two watermarking schemes.

One is based on modifying the mean of vertex norms, re-

ferred as ‘Method I’ in their paper, and the other is based

on modifying the variance of the vertex norms, referred as

‘Method II’. We have implemented their methods as a base-

line to compare with ours. For the proposed method, we set

the gap parameter ΔG = 0.1, which is chosen by comparing

the performance of different ΔG’s. The software to solve the

QP problem is BPMPD [8], which is built for solving large-

scale linear and quadratic programming problems.

Firstly, we randomly generate 55 watermarking bits

(N = 55) and embed them into the original mesh. In order to

obtain a fair comparison, we deliberately set α of method I

to 0.05, then adjust the strength factors of method II and

the proposed method so that they produce perceptually

similar watermarked meshes. The perceptual similarities

between the original mesh and the watermarked meshes are

quantitatively measured by Metro [9], which is a software

for calculating the Hausdorff distance (HD) between two

meshes. Experiments indicate that when the strength factor

α = 0.1212 for method II, and α = 0.0814 for the proposed

method, the watermarked meshes produced by these three

methods have similar Hausdorff distances to the original

mesh, as shown in Figure 2.

Fig. 1. The Stanford 3D head model, shown from three

different angles.

Since these methods produce perceptually similar water-

marked meshes, the next step is to test their robustness to

noise. Gaussian noise is added to each of the points in the

watermarked meshes. The mean of the Gaussian noise is

zero, and its variance is proportional to the maximal vertex

norm in the mesh. We define the ‘noise ratio’, or NR, as

the ratio of the noise variance to the maximal vertex norm

in the mesh. Then the noise-added mesh is decoded by the

decoding process to obtain the watermarking bits. In order to

filter out the randomness, we repeat this process for 100 times

and obtain the correct bit rate (CBR), which is defined as the

ratio of correctly decoded bits to all embedded bits.

Table 1 shows the CBR’s of the three methods in dif-

ferent noise ratios. The greatest CBR in each noise ratio

is printed in bold. We can see that the proposed method

performs slightly worse than Method II when the noise mag-

nitude is small (NR = 0.001), but it performs much better in

greater noise ratios.

The same experiments are carried out on the bunny and

beethoven models. It is shown that the proposed method

consistently performs better in resisting Gaussian noise.

However, space precludes further clarification of these ex-

periments.
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(a) Method I, α = 0.0500, HD = 0.4953

(b) Method II, α = 0.1212, HD = 0.4950

(c) The proposed method, α = 0.0814, HD = 0.4953

Fig. 2. The watermarking effects of the three methods. The

strength factors are deliberately selected so that the water-

marked meshes produced by these methods obtain similar

Hausdorff distances to the original mesh.

4. CONCLUSIONS

This paper has proposed a histogram-based method for water-

marking 3D polygonal meshes by using quadratic program-

ming to minimise the mean square error between the original

mesh and the watermarked mesh. Compared with the water-

marking schemes in [1], this method performs better in resist-

ing Gaussian noise, thus potentially is a better watermarking

algorithm. However, this method has difficulties in dealing

with large meshes because of the complexity limitations of

computers and existing QP solvers. A segmentation-then-

embedding scheme, as proposed in [6], can be used to solve

this problem.
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