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ABSTRACT

Using fixed rate uniform vector quantization, in this paper, we

consider how to design a joint watermarking and compression

(JWC) system for Gaussian and Laplacian sources to maxi-

mize the robustness in the presence of additive Gaussian at-

tacks under constraints on the compression rate and quantiza-

tion distortion. Firstly, we construct vector quantizers shaped

to match the multidimensional distribution of source signals.

Then we scale codebooks corresponding to the vector quan-

tizers to maximize the robustness of the watermarks against

the additive Gaussian attacks. Simulation results show that

the proposed scheme can achieve up to 0.92 dB distortion-

to-noise ratio (DNR) gain over JWC schemes using uniform

scalar quantization while maintaining the simplicity of imple-

mentation with uniform quantization.

Index Terms— Joint watermarking and compression,

uniform vector quantization, distortion-to-noise ratio, robust-

ness

I. INTRODUCTION

As a widely accepted approach for copyright protection and

content authentication, digital watermarking and information

hiding has recently drawn intensive attention from both in-

dustrial and academic communities[1], [2], [3]. In most ap-

plications, watermarked signals will be likely stored and/or

transmitted in compressed format. Instead of treating wa-

termarking and compression separately, it is interesting and

beneficial to look at joint design of watermarking and com-

pression schemes [6], [7], [8]. In [6], using fixed-rate scalar

quantization (SQ) for watermarking and compression, the au-

thors investigated how to design optimal joint watermarking

and compression (JWC) systems to maximize the robustness

of the systems in the presence of addictive Gaussian attacks

under constraints on the compression rate and quantization

distortion.
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Motivated by the performance gain of vector quantiza-

tion(VQ) over SQ in source coding, in this paper, we extend

JWC schemes using SQ to JWC schemes using uniform VQ

for i.i.d. Gaussian and Laplacian sources by utilizing lattice

VQ techniques in [4]. Experimental results show that the new

proposed JWC scheme achieves better performance than bi-

nary JWCs using uniform SQ in [6] by up to 0.92 dB DNR

gain. We also show that the proposed scheme outperforms

JWCs using nonuniform SQ schemes in [6] with additional

superiority on the simplicity of implementation.

The remainder of the paper is organized as follows. Sec-

tion II briefly reviews uniform VQ, that is, integer lattice VQ.

In Section III we describe the design of a joint watermarking

and compression algorithm using uniform VQ. Simulation re-

sults are given in Section V.

II. LATTICE VQ FOR GAUSSIAN AND LAPLACIAN
SOURCES

By imposing a structural constraint on the output, the im-

plementation of lattice VQ has the advantage of design

simplicity and reduced computation complexity over those

of un-structural VQ’s. Therefore, lattice VQ has been

widely studied and used in the design of source coding [4].

Some of the most frequently used lattices in VQ include

An(n ≥ 1), Dn(n ≥ 3), En(n ≥ 16), and their duals [4].

In this paper we focus on the Zn lattice, also called cubic or

integer lattice because of its exceptional simplicity.

An integer lattice, denoted by Λ, is a set of vectors defined

by

Λ = {x : x = c1a1 + c2a2 + · · · + cnan}
where the ai is a vector with the ith component equal to one

and all other components zeros, and the ci are integers. Since

all possible integer combinations are allowed, the size of the

lattice is, in general, infinite. For a given dimension and a

compression rate, the design of a cubic lattice codebook con-

sists of two steps [4]. First, an infinite lattice is truncated to

obtain an integer codebook with the number of output points

which is determined by the compression rate and dimension.

Second, scaling is performed on the finite integer lattice code-

book to minimize the encoding distortion.

In the first step, the way of truncation is determined by

the distribution of source signal and it is performed in such
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a way that the higher probability region of the source signal

is emphasized [4]. Consider an n-dimensional vector S =
(S1, S2, · · · , Sn), where the Si are i.i.d. Gaussian or Lapla-

cian random variables with zero mean and unit variance. The

joint probability density function (pdf) of S is given by

p(s) = A1exp(−A2

n∑
i=1

|si|v) (2.1)

where A1 = vΓ(3/v)1/2

2Γ(1/v)3/2 , A2 = [Γ(3/v)
Γ(1/v) ]

v/2, Γ(.) is the Gamma

function defined as Γ(x) =
∫ ∞
0

tx−1e−tdt for x > 0, v is

the shape parameter with v = 1 for a Laplacian source and

v = 2 for a Gaussian source. Since each si is i.i.d., the multi-

dimensional pdf has contours of constant probability defined

by n − 1–dimensional surfaces

n∑
i=1

|si|v = constant. (2.2)

From (2.1) and (2.2) we can see, the region close to the origin

is more important than a region far from it. Furthermore, the

pdf is symmetric with respect to the coordinate axes. There-

fore, the shape of the constant pdf contours should be taken

into account in the codebbok design and the codebook should

be symmetric with respect to the coordinate axes. For the

Gaussian source, the infinite integer lattice should be trun-

cated in a spherical form so as to include the high pdf region.

A so called theta function of the cubic lattice is used to com-

pute the number of lattice vectors in a sphere with a certain

radius[4]. In the Laplacian case, a finite pyramidal codebook

is obtained. To determine the number of integer lattice vec-

tors within a pyramid, Fisher’s recursive algorithm in [5] can

be used.

By constructing a vector quantizer which is shaped to

match the multidimensional distribution of the source signal,

lattice VQ can achieve smaller distortion than SQ [4].

III. AN ALGORITHM FOR JWC USING UNIFORM
VECTOR QUANTIZATION

Having reviewed integer lattice VQ in the last section, in this

section, we present an JWC algorithm by utilizing the above

lattice VQ techniques.

Consider embedding an n-dimensional binary watermark

message vector m = (m1,m2, · · · ,mn), mi ∈ {0, 1} within

an n-dimensional host signal vector. We construct 2n differ-

ent quantizers with each quantizer representing a watermark

vector. Each quantizer vqj(s), j ∈ {1, · · · , 2n} is a mapping

from the Rn to a codebook V Bj = {vbj
1,vbj

2, · · · ,vbj
L}.

All codebooks V Bj are assumed to be disjoint. The output

values, vbj
l , l = 1, · · · , L are referred to as reconstruction

points. The component of the reconstruction point vbj
l =

(vbj
l1, vbj

l2, · · · , vbj
ln) can be specified as

vbj
li =

{
(ki − 1

4 − �rm�)Δ, if mi = 0
(ki − 3

4 − �rm�)Δ, if mi = 1

where Δ is the quantization step size, ki, i = 1, · · · , n, is an

integer chosen from the set {ki : 1 ≤ ki ≤ 2�rm�}, and ki

should be chosen such that the following formula is satisfied

(
n∑

i=1

|vbj
li|v)1/v ≤ rmΔ

where v is the shape parameter mentioned in the last section

and rm is a certain radius of cubic lattice codebook in lattice

VQ [4] which determines the number of reconstruction points

in a codebook, that is L, in the quantizer vqj(s).
The quantization procedure corresponding to vqj(s) is il-

lustrated as follows. The norm and radius in the following de-

note the l1 and l2 norm and radius for a Laplacian and Gaus-

sian source respectively.

Step 1 Given a dimension and a compression rate, determine

the l1 or l2 radius rm of an integer lattice codebook by

using the methods mentioned in [4] or [5].

Step 2 Compute the norm of the host vector and compare it

to rmΔ. If it is greater than rmΔ, go to Step 3. Other-

wise, quantize each component of the host vector using

a scalar quantizer as follows:

qmi(si) =
{

b0
ki

= (ki − 1
4
− �rm�)Δ, if mi = 0

b1
ki

= (ki − 3
4
− �rm�)Δ, if mi = 1

(3.3)

where � � is a ceiling function, ki is an integer chosen

from the set {ki : 1 ≤ ki ≤ 2�rm�} such that the mean

square error between si and qmi(si) is minimized. If

the norm of the new quantized vector is not greater than

rmΔ, then this new vector is the watermarked signal

and stop the process. Otherwise, go to Step 4.

Step 3 Project the host signal vector orthogonally onto the

surface of a sphere or pyramid with a radius rmΔ. Use

(3.3) to quantize each component of the projected vec-

tor. If the norm of the new quantized vector is not

greater than rmΔ, then the new vector is the water-

marked signal and stop the process. Otherwise, go to

Step 4.

Step 4 Given the new vector from Step 2 or Step 3, find all

vectors in Rn such that each of those vectors differs

from it in only one component but with the same dis-

tance Δ. If one or more of those vectors lie in the jth

codebook, choose the one closest to the original host

vector or projected vector in Euclidian distance to be

the watermarked signal and stop the process. Other-

wise, find the one with the smallest norm, and repeat

Step 4 until an acceptable point is found.

Associated with the quantizer vqj is a partition of the Rn

into L quantization or Voronoi cells. The lth Voronoi cell Cj
l

is defined by{
Cj

l = {s ∈ Rn : vqj(s) = vbj
l }⋃L

l=1 Cj
l = Rn
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The average squared error distortion per dimension corre-

sponding to Cj
l is

Dj
l =

1
n

∫
Cj

l

n∑
i=1

(si − vbj
li)

2 p(s)ds1 · · · dsn (3.4)

The total average squared error distortion Dj for the quan-

tizer vqj should sum up all the Dj
l ’s for all Voronoi cells in

the quantizer vqj . Since the host vector has a symmetric dis-

tribution with respect to the coordinate axes, we have

D(S,X) = D1 = D2 = · · · = D2n

where D(S,X) denotes the average distortion per dimension

between the host signal and the watermarked signal.

At the decoder, a minimum distance decision rule is em-

ployed to extract the watermark. For the simplicity of com-

putation, we decode the watermark bit by bit, that is,

m̂(y) = arg min
m∈{0,1}

|| y − qm(y)|| (3.5)

where y is the received signal and qm(.) was defined in (3.3).

Denote by Pe the average bit error probability

Pe =
1
2

∑
m∈{0,1}

2�rm�∑
k=1

[
∫

p(s)p(bm
k |s) ds ]Pm

k, e (3.6)

where p(bm
k |s) is the transitional probability when quantiz-

ing the host signal and Pm
k, e is the conditional decoding error

probability given m and given the fact that bm
k is the water-

marked signal. Intuitively the decoding error probability Pe

decreases with the increase of the quantization step size Δ. In

the following we analyze Pe in the assumption of high com-

pression rates.

In the case of high compression rates, the probability of

the host vector outside the sphere (or pyramid) can be as-

sumed to be negligible. Base on this assumption, the total

encoding process can be approximated by Step 2. Since each

component of the host vector in Step 2 is quantized inde-

pendently, Step 2 in the encoding process is actually an n-

dimensional product of binary uniform scalar quantization.

Assume that the attack channel is i.i.d. AWGN with zero

mean and a noise variance of σ2
n, Pe can then be approxi-

mated by the decoding error probability of the JWC system

using fixed-rate uniform SQ in [6].

For the host signal vector lying within a sphere or pyra-

mid, we have the following lemma.

Lemma 1 The marginal pdf of a Gaussian or Laplacian host
vector which lies in a sphere or pyramid with any radius ,
f(s), is symmetric with respect to the origin, continuous and
nonincreasing when s ≥ 0.

In view of Lemmas 1 and 2 in [6], the decoding error prob-

ability is then a decreasing function of the quantization step

size Δ over the range where Δ
σn

> 4.0941. Therefore, under

the condition that Δ
σn

> 4.0941, we can increase the quan-

tization step size to decrease the decoding error probability.

With an encoding constraint D1, the optimization problem is

to find the largest allowable quantization step size Δopt . To

determine Δopt, one can set the distortion function to D1 and

find the largest root of the equation D = D1. In general it is

difficult to determine the roots mathematically. Therefore, we

determine the optimum root numerically.

It can be verified by the experiment that the distortion

function is a convex function of the quantization step size. To

find Δopt, we can first find the quantization step size Δmin

that minimizes the encoding distortion by numerical methods

such as the bisection method or Newton method, and then

scale the quantization step size with one coefficient a(a > 1)
such that Δ = aΔmin and D(Δ) = D1, the resulting quanti-

zation step size being the optimum quantization step size.

IV. SIMULATION AND COMPARISON

Having described algorithms for designing JWCs using uni-

form VQs, in this section, we evaluate the performance of the

JWC schemes using uniform VQ by simulation and compare

it to the JWC schemes using SQ in [6].

Consider an i.i.d. Gaussian and Laplacian host signal

with zero mean and unit variance. Assume that the squared

error distortion measure is used and the attack channel is

AWGN. The algorithm for designing the JWC using uniform

VQ scheme is carried out. Since it’s difficult to compute D
and Pe mathematically, we perform Monte Carlo simulation

to approximate the true average encoding distortion and de-

coding error probability. In the Monte Carlo simulation, 50

sample sequences of length 107 were processed.

Figure 1 plots curves for Gaussian sources in terms of the

bit error probabilities Pe versus DNR for the optimum JWC

schemes using 16–dimensional uniform VQ, and optimum

uniform SQ in [6] respectively. The composite compression

rate of watermarked signal is 5 bits per host sample in which

we embed 1 watermark bit of information per watermarked

sample. The encoding distortion is 0.011624. From the fig-

ure, we can see that the optimum JWC using 16–dimensional

uniform VQ achieves better performance than JWCs using

optimum uniform SQ in [6]. At Pe = 5 × 10−4, the JWC

using optimum uniform VQ provides 0.92 dB DNR gain over

the JWC using optimum uniform SQ.

Table 1. gives a comparison of the decoding error prob-

abilities between JWCs using uniform VQ and JWCs using

nonuniform SQ [6]. As we can see, the JWC using optimum

uniform VQ achieves better performance than the JWC using

optimum nonuniform SQ. In addition, given a distortion con-

straint JWC using uniform VQ only requires a single quan-

tization step size for any channel statistics while JWC using

nonuniform SQ should produce different quantization code-

books for different channel statistics. Therefore, the imple-
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mentation of the JWC using uniform VQ is simpler than that

using nonuniform SQ.
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Fig. 1. Decoding error prob. for Gaussian host signal

DNR (dB) -1.625 5.09 8.612 12.35 14.633

Nonuniform SQ 0.4461 0.1279 0.02294 4.87e-4 5.99e-6

Uniform VQ 0.445 0.1205 1.98e-2 3.13e-4 4.0e-6

Table 1. A comparison of error prob. between JWC using

uniform VQ and JWCs using nonuniform SQ

Fig. 2 gives a comparison of decoding error probabili-

ties for Laplacian sources between JWC using uniform VQ

and JWCs using nouniform SQ. The encoding distortion is

0.02518. Likewise JWC using uniform VQ achieves better

performance. For other compression rates and distortion con-

straints, similar results have been obtained.

V. CONCLUSION

In this paper, a JWC scheme using uniform VQ was pro-

posed. We showed that it could achieve better performance

than JWCs using SQ. In the future research, we will extend

the current research to JWC schemes using other lattices. To

further improve the robustness, channel coding techniques

will also be applied.

VI. REFERENCES

[1] P. Moulin and R. Koetter, “Data-hiding codes,” Pro-
ceedings IEEE, vol. 93, no. 12, pp. 2083-2127, Dec.

2005.

-6 -4 -2 0 2 4 6 8 10 12 14 16

10-5

10-4

10-3

10-2

10-1

DNR(dB)

Er
ro

r P
ro

ba
bi

lit
y

Uniform Scalar QW
Uniform Vector QW

Fig. 2. Decoding error prob. for Laplacian host signal

[2] B. Chen and G. W. Wornell, “Quantization index

modulation: A class of provably good methods for

digital watermarking and information embedding,”

IEEE Trans. Inform. Theory, vol. 47, pp. 1423-1443,

May 2001.

[3] L. Prez-Freire and F. Prez-Gonzlez, “Security of

lattice-based data hiding against the watermarked

only attack,” IEEE Trans. on Inform. Forens. and Se-
curity, vol. 3, pp. 593-610, Dec. 2008

[4] D. G. Jeong and J. D. Gibson, “Uniform and piece-

wise uniform lattice vector quantization for memory-

less Gaussian and Laplacian sources ,” IEEE Trans.
Inform. Theory, vol. 39, no. 3, pp. 786-804, May

1993.

[5] T. R. Fisher, “A pyramidal vector quantizer ,” IEEE
Trans. Inform. Theory, vol. 32, pp. 568-583, July

1986.

[6] G. Wu and E.-H. Yang, “Joint watermarking and com-

pression using scalar quantization for maximizing ro-

bustness in the presence of additive gaussian attacks,”

IEEE Trans. Signal Processing, vol. 53, no. 2, pp.

834-844, Feb. 2005.

[7] L. Guillemot and G.-M. Moureaux, “Indexing lat-

ice vectors in a joint watermarking and compresison

scheme,” in Proc. of ICASSP, pp. 672-675, 2003.

[8] A. Maor and N. Merhav, “On joint information em-

bedding and lossy compression,” IEEE Trans. Inform.
Theory, vol. 51, no. 8, pp. 2998-3008, Aug. 2005.

1496


