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ABSTRACT

This paper presents the first practical perfectly-secure steganog-

raphy codes for covert communication via packet timings

across interactive traffic relayed over network queuing sys-

tems. It has recently been shown that sparse-graph lin-

ear codes followed by shaping techniques, combined with

message-passing decoding, can enable practical timing chan-

nel codes with low symbol error rates near the information

capacity of the famous “Bits Through Queues” channel.

Inspired by this new class of codes, we use an alternative

shaping technique that employs random dithers and construct

provably secure steganographic codes for communication

using packet timings in interactive traffic. To validate the

perfect secrecy of our steganographic codes, we model in-

teractive traffic as a two-state Markov Modulated Poisson

Process (MMPP) and show its goodness-of-fit.

Index Terms— Covert Communication, Steganography,

Timing Channels, Interactive Traffic

1. INTRODUCTION

Historically, timing channels are synonymous with covert

channels [14, 10]. Covert channels are mechanisms for com-

municating information in ways that are difficult to detect.

Packet networks are designed with the goal of communicat-

ing through packet contents and their headers; hence, the

timing channel induced by the inter packet timings provides

a side channel that can be utilized for covert communication.

Figure 1 illustrates a timing covert channels between two par-

ties. The eavesdropper (a.k.a wire tapper) sees the exchange

of packets but fails to realize the covert communication in

packet timings. Besides covert communication, recently a

host of new security applications have arisen where it is de-

sired to communicate - not by means of packets contents - but

by utilizing the inter packet timings [12, 15].

∗Both authors would like to acknowledge the support of NSF through

grants CCF 07-29061 and CNS 08-31488.

Fig. 1. Covert communication: An eavesdropper inspects the

packet contents, but is unable to decode messages modulated

by the packet timings.

This paper discusses a practical implementation of perfectly-

secure steganographic codes for queuing channels, where the

covertext is interactive traffic (e.g. an SSH flow). Here,

we consider a communication channel where the encoder

communicates covert information based upon timings be-

tween successive packets over an interactive traffic session.

A receiver observes packet timings after they have traveled

through a communication network with queues at interme-

diate router nodes. Based upon the encoding mechanism,

the statistical structure of the network queues, and the packet

timings it observes, the receiver decodes the covert message.

In the famous ‘Bits Through Queues” result, Anantharam &

Verdu characterized - in closed form - the capacity a channel

where a single server queue with exponential service times is

placed between the transmitter and receiver [1]. Recently, a

class of low complexity codes that approach capacity of such

channels were introduced [6]. Building upon the work in [6],

we propose the first perfectly-secure class of steganographic

codes with low decoding complexity for communication over

queuing channels.

1.1. Summary of Results and Organization

The main contribution of this paper is the introduction and

practical implementation of perfectly-secure steganographic

codes [4, Definition 1] for queuing channels, where the covert
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text is interactive traffic (e.g. SSH flow). More precisely, we

consider a communication channel where the encoder (a user

typing over an interactive session such as SSH) communi-

cates with a receiver. The encoder conveys covert information

by modifying timings between successive packets that act as

covertext. A receiver observes packet timings after they have

traveled through a communication network with queues at in-

termediate router nodes.

In Section 2, we present a model for interactive traffic,

as it is essential to the analysis of the perfect secrecy of our

steganographic codes. Specifically, we model the interactive

connection as a two-state Markov-modulated Poisson process

(MMPP) [7], where one state corresponds to a user typing

characters and the other state corresponds to periods of si-

lence. As the receiver is involved in the interactive session, it

is aware of the states of the MMPP. In Subsection 2.1, we

show statistically that our two-state MMPP indeed fits the

interactive traffic well. Once the underlying distribution of

the interactive traffic is parameterized, we use a novel dither-

based technique to shape our codes according to the two-state

MMPP which in turn guarantees that our code will have per-

fect secrecy. In Section 3 we present our code construction

which is based on the low-complexity codes of [6]. The secu-

rity of our steganographic codes is discussed in Section 3.1.

Finally, in Section 4, we demonstrate the performance of our

scheme with a linear complexity decoder on simulated queu-

ing channels.

To summarize: 1) we model interactive traffic as a two-

state Markov Modulated Poisson Process (MMPP) and val-

idate its goodness-of-fit statistically; 2) using an alternative

shaping technique that employs random dithers, we construct

provably good steganographic codes for communication us-

ing packet timings in interactive traffic; 3) we demonstrate

the performance of our codes in terms of symbol error rates

over simulated queuing channels.

2. MODEL OF INTERACTIVE TRAFFIC

We first present a model for interactive traffic, as it is essen-

tial to the analysis of perfect-secrecy of our steganographic

codes. Given that the traffic might be encrypted (e.g. SSH

traffic), in modeling interactive traffic, we do not consider the

content of the packets; likewise, the sizes of packets repre-

senting keystrokes are likely to be uniform. We thus consider

only the arrival time of the packets in the flow, allowing us to

model the flow as a point process.

Suppose we observed packet arrivals at times t1 < t2 <
· · · < tn in a fixed interval (0, τ ] such that ti is the time

the i-th packet arrived. The collection of arrival times t =
(t1, t2, . . . , tn) specifies a flow f . Furthermore, we model the

interactive connection as a Markov-modulated Poisson pro-

cess (MMPP) [7]. The set of possible states are {0, 1}, where

state 0 corresponds to user typing characters and state 1 cor-

responds to periods of silence, when the user is expecting a

λ0 λ1

P00

P10=1

P01

Fig. 2. The embedded two-state Markov chain.

response from the receiver. Figure 2 depicts this two-state

MMPP.

When the process is in state 0, packet arrivals are modeled

as a Poisson process of rate λ0; i.e. the inter-arrival times

{Zi} are independent and identically distributed (i.i.d.) ac-

cording to an exponential distribution with rate λ0:

fZ(z) = λ0e
−λ0z.

When the process is in state 1, the arrivals are again modeled

as Poisson but with rate λ1 < λ0. Given that state 1 cor-

responds to a period of silence (no packet arrivals), as soon

as a packet arrives, the embedded Markov chain transitions

to state 0. Therefore, the transition probabilities {Pij , i, j =
0, 1} of the embedded Markov chain {φn, n ≥ 0} are as fol-

lows:

P00 + P01 = 1,

P01 = 1, P11 = 0 (1)

and the embedded Markov chain is defined by the matrix:

[
P00 1

1 − P00 0

]

The steady state probabilities π0, π1 of the embedded chain

φn are given by:

π0 =
1

2 − P00
, π1 =

1 − P00

2 − P00
(2)

2.1. Parameter Selection and Goodness of Fit

We estimated the parameters P00, λ0, and λ1 of our MMPP

model by using network traces of SSH connections taken at

a wireless access point in our institution. For a trace, we es-

timate the state transition probabilities, the underlying state

sequence of the embedded Markov chain, and the correspond-

ing rates λ0 and λ1 of each state using the EM algorithm [13].

Our estimated values for the transition probability P00 and the

rates λ0 and λ1 were as follows:

P00 = .96 λ0 = 5.6 λ1 = 0.57 (3)
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Fig. 3. Q–Q plot of Poisson and MMPP models with our

sample data.

To assess the goodness of fit of our MMPP model with pa-

rameters of (3), we used a quantile–quantile (Q–Q) plot [3].

Using the theoretical CDF of the model, the observations are

mapped into values in interval [0, 1]. If the underlying statis-

tical model of the data is consistent with the observations, the

values obtained from the mapping are uniformly distributed in

the interval [0, 1]. To assess the uniformity of the mapped val-

ues or equivalently assessing the goodness of the theoretical

model an empirical CDF of the mapped values is compared

against the theoretical CDF of a uniform distribution, which

is a 45-degree reference line. The closer the CDF to this ref-

erence line, the greater the evidence that the statistical model

captures the underlying phenomenon. The Q–Q plot in Fig-

ure 3 shows that the MMPP model for the interactive traffic

with parameters (3) provides a good fit for the data and sig-

nificantly outperforms a simpler Poisson model, or a Pareto

distribution that has been previously proposed to fit interac-

tive traffic [11].

3. CODE CONSTRUCTION FOR TRAFFIC SHAPING

As mentioned earlier, we now develop codes that can be used

for embedding information in timings during interactive SSH

sessions. We consider forcing the inter-arrival times to satisfy

certain algebraic conditions. We know that if we would like

to construct a random variable Z with cumulative distribution

function (CDF) FZ(z), then we can first construct a uniform

random variable U on [0, 1] and then construct X as

Z = F−1
Z (U). (4)

So for the for the discrete-time (DT) and continuous-time

(CT) queuing channel scenarios, Markov-modulated memo-

ryless point processes we have:

CT (exponential) DT (geometric)

FZ(z) 1 − e−λz 1 − (1 − λ)z

Z(U)
− ln(1 − U)

λ

⌈
ln(1 − U)
ln(1 − λ)

⌉ (5)

So by first using the inverse CDF, we can collapse the en-

coding problem into constructing n i.i.d. uniform [0, 1] ran-

dom variables. It is well known [9] that the ensemble of ran-

dom linear codes over FQ produces codewords words whose

elements are i.i.d. and uniformly distributed over FQ . By

shaping according to the method in the previous section, Gal-

lager showed how using random linear coset codes over finite

fields with maximum-likelihood decoding suffices to achieve

capacity [9, p. 208] on arbitrary discrete memoryless chan-

nels.

We propose using a technique based upon algebraic codes

and dithering. Consider some field size Q = 2t. Then we

force our Xi’s to lie in the finite field FQ. We consider a

matrix H with m < n rows and n columns defined over FQ

and define the linear coset code

C = {x : Hx = w} .

From here, interpret each xi ∈ FQ as a member of R and

define the ith inter-arrival time, Zi, as

Zi = Ti(xi) (6a)

= F−1
Z

([
xi

Q
+ Ui

]
mod 1

)
(6b)

where (U1, . . . , Un), are i.i.d. uniform[0, 1] dithers that have

been used extensively in quantization and watermarking [5],

and communication on linear Gaussian channels [8]. We note

from the Crypto Lemma [8],
[

xi

Q + Ui

]
mod 1

will also be

uniformly distributed on [0, 1]. Secondly, the ensemble of

random linear codes, the Xi’s will be uniformly distributed

over FQ and thus the Zi’s will be i.i.d. and distributed ac-

cording to their target distribution.

Before the interactive traffic begins, the encoder and de-

coder construct the two shaping function vectors pertaining to

i.i.d. inter-arrival times at rates λ0 and λ1, respectively:

T (0) = [T (0)
1 (·), T (0)

2 (·), . . . , T (0)
n (·)]

T (1) = [T (1)
1 (·), T (1)

2 (·), . . . , T (1)
n (·)]

We assume that the encoder and decoder in real time know

the states φ1, φ2, . . . , φn, where each φi ∈ {0, 1} and P (φn)
follows from the Markov model defined earlier. So we con-

struct the inter-arrival times as follows:

Ti(xi) = T
(φi)
i (xi).

So in short, we a priori define the 2n functions

{T (0)
i : FQ → R, 1 ≤ i ≤ n},

{T (1)
i : FQ → R, 1 ≤ i ≤ n},

and they are completely characterized by a table of 2nQ real

numbers known at the encoder and decoder. In practice, we

can imagine that the encoder and decoder only need to know

the state of a random number generator to generate the 2n
Ui’s, which subsequently defines the 2n functions.
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3.1. Perfectly Secure Structure of This Architecture

Under the assumption that the SSH session evolves according

to a two-state Markov-modulated Poisson process, we iterate

here the key properties of our approach that makes it perfectly

secure:

• We employ random linear coset codes that enable the

inter-arrival times Zi to be independent across time [9]

• By the Crypto Lemma [8] and our inverse CDF shaping

technique (6), each inter-arrival time Zi is of the desired

memoryless distribution with parameter λφi .

Thus, our approach is perfectly secure with respect to any

Markov-modulated Poisson process testing approach. More-

over, our dither shaping technique (6) allows us to precisely

mimick the statistical structure of any point process traffic

model.

4. PERFORMANCE ACROSS QUEUING TIMING
CHANNELS

Here we demonstrate our code’s performance across a discrete-

time first-in, first-out queuing system with geometric service

times of parameter μ = 0.9. The Markov model parameters

reflect the continuous-time parameters given in (3) and are

given by λ0 = 0.45, λ1 = 0.1, and p00 = 0.96; The average

long-term rate of packets/slot for the arrival process is given

by:

λ =
1

π0
λ0

+ π1
λ1

,

where π0 and π1 are given by (2). For a discrete queue with

geometric service times, the capacity over all input processes

of rate λ is given by [2]:

C(λ) = H2(λ) − λ

μ
H2(μ) (bits/slot)

C̃(λ) =
H2(λ)

λ
− H2(μ)

μ
(bits/packet),

where H2(·) is the binary entropy function, and the capacity-

achieving input is a Bernoulli process with i.i.d. geometric

inter-arrival times of rate λ. So although our traffic scheme is

strictly suboptimal in terms of capacity, we gain in terms of

traffic shaping and covertness.

We used the aforementioned encoding process and the de-

coder architecture given in [6] to test its performance using a

Q = 4, n = 1000 regular LDPC coset code to encode mes-

sages and simulate them through a FCFS memoryless queue.

The DT performance for a geometric server with service rate

μ = 0.9 is given in Figure 4. This demonstrates the effective-

ness of this approach, with low symbol error rates near the

capacity, while maintaining provably good covertness.

Fig. 4. Symbol Error Rate vs ratio to capacity for the DT

queuing channel.
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