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ABSTRACT
Media authentication is important in content delivery via untrusted
intermediaries, such as peer-to-peer (P2P) file sharing. Many dif-
ferently encoded versions of a media file might exist. Our previous
work applied distributed source coding not only to distinguish the
legitimate diversity of encoded images from tampering but also to
localize tampered regions in an image already deemed to be inau-
thentic. In both cases, authentication requires a Slepian-Wolf en-
coded image projection that is supplied to the decoder.

We extend our scheme to authenticate images that have under-
gone affine warping. Our approach incorporates an Expectation
Maximization algorithm into the Slepian-Wolf decoder. Experimen-
tal results demonstrate that the proposed algorithm can distinguish
legitimate encodings of authentic images from illegitimately modi-
fied versions, despite an arbitrary affine warping, using authentica-
tion data of less than 250 bytes per image.

Index Terms— Image authentication, distributed source coding,
Expectation Maximization

1. INTRODUCTION

Media authentication is important in content delivery via untrusted
intermediaries, such as peer-to-peer (P2P) file sharing or P2P mul-
ticast streaming. In these applications, many differently encoded
versions of the original file might exist. Moreover, transcoding and
bitstream truncation at intermediate nodes might give rise to further
diversity. Intermediaries might also tamper with the media for a vari-
ety of reasons, such as interfering with the distribution of a particular
file, piggybacking unauthentic content, or generally discrediting a
distribution system. In previous work, we applied distributed source
coding (DSC) to image authentication to distinguish the diversity of
legitimate encodings from malicious manipulation [1] and demon-
strated that the same framework can localize tampering in images
deemed to be inauthentic [2]. In this paper, we extend our image
authentication scheme to be robust to affine warping. Our approach
lets the authentication decoder learn affine warping parameters using
an Expectation Maximization [3] (EM) algorithm.

Section 2 reviews our image authentication system using dis-
tributed source codes [1]. In Section 3, we formalize the authenti-
cation problem with affine warping and introduce our extension for
image authentication with parameter learning. The EM algorithmic
details are given in Section 4. Simulation results in Section 5 show
that the proposed scheme can distinguish between authentic encod-
ings of images with affine warping and illegitimately modified ver-
sions.
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tors to the Stanford Center for Integrated Systems and, in part, by the Max
Planck Center for Visual Computing and Communication.

2. REVIEW OF IMAGE AUTHENTICATIONWITH DSC

Fig. 1 is the block diagram for our earlier image authentication
scheme [1] as well as the current work. We denote the source image
as x. We model the image-to-be-authenticated y by way of the
space-varying two-state lossy channel in Fig. 2. The legitimate state
of the channel performs lossy JPEG2000 or JPEG compression and
reconstruction with peak signal-to-noise ratio (PSNR) of 30 dB or
better. The illegitimate state additionally includes malicious tam-
pering. The channel state variable Si is defined per nonoverlapping
16x16 block of image y. If any pixel in block Bi has been tampered
with, Si = 1; otherwise, Si = 0.

We now review the authentication system. The left-hand side of
Fig. 1 shows that a pseudorandom projection (based on a randomly
drawn seed Ks) is applied to the original image x to produce projec-
tion coefficients X, which are quantized to Xq . The authentication
data comprise two parts, both derived from Xq . The Slepian-Wolf
bitstream S(Xq) is the output of a Slepian-Wolf encoder based on
rate-adaptive low-density parity-check (LDPC) codes [4]. The much
smaller digital signature D(Xq , Ks) consists of the seed Ks and
a cryptographic hash value of Xq signed with a private key. The
authentication data are generated by a server upon request. Each re-
sponse uses a different random seed Ks, which is provided to the
decoder as part of the authentication data. This prevents an attack
which simply confines the tampering to the nullspace of the projec-
tion. Based on the random seed, for each 16x16 nonoverlapping
block Bi, we generate a 16x16 pseudorandom matrix Pi by drawing
its elements independently from a Gaussian distribution N (1, σ2)
and normalizing so that ||Pi||2 = 1. We choose σ = 0.2 empiri-
cally. The inner product 〈Bi, Pi〉 is an element of X, quantized to
an element of Xq .

The authentication decoder, on the right-hand side of Fig. 1,
seeks to authenticate the image y with authentication data S(Xq)
and D(Xq , Ks). It first projects y to Y in the same way as during
authentication data generation. A Slepian-Wolf decoder reconstructs
Xq

′ from the Slepian-Wolf bitstream S(Xq) using Y as side infor-
mation. Decoding is via joint bitplane LDPC belief propagation [5]
initialized according to the known statistics of the legitimate chan-
nel state at the worst permissible quality for the given original image.
Then the image digest of Xq

′ is computed and compared to the im-
age digest, decrypted from the digital signature D(Xq , Ks) using a
public key. If these two image digests are not identical, the receiver
declares image y to be inauthentic. If they match, then Xq has been
recovered. To confirm the authenticity of y, the receiver verifies that
the empirical conditional entropy Hemp(Xq |Y ) (based on the legiti-
mate channel model) is less than a certain threshold.

Since this second-pass comparison uses all available informa-
tion, the threshold for Hemp(Xq|Y ) specifies how statistically sim-
ilar the image-to-be-authenticated must be to the original to be de-
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Fig. 1. Image authentication system based on distributed source coding.

clared authentic. But the rate of the Slepian-Wolf bitstream S(Xq)
determines whether the quantized image projection Xq is recovered
at all [6]. Accordingly, at the encoder, we select a Slepian-Wolf bit-
rate just sufficient to successfully decode with both legitimate 30 dB
JPEG2000 and JPEG reconstructed versions of x. At the decoder,
we choose a threshold for Hemp(Xq|Y ) for the second-pass compar-
ison to distinguish between the different joint statistics induced in
the images by the legitimate and illegitimate channel states.
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Fig. 2. Space-varying two-state lossy channel.

3. AFFINEWARPING MODEL

In this paper, we replace the two-state lossy channel in Fig. 2 with
the one in Fig. 3. Now both the legitimate and illegitimate states of
the channel are affected by affine warping. In the legitimate state,
we model the channel as

y(m) = x(n) + z(m), where m,n ∈ R2

with n = Am + b, where A ∈ R2×2 and b ∈ R2.

A and b are transformation and translation parameters, respectively,
and z is noise introduced by compression and reconstruction. To
keep y the same size as x, it is padded with black pixels (arbitrar-
ily) and cropped. Fig. 4(a) shows a source image “Lena” at 512x512
original resolution. The legitimate y in Fig. 4(b) is first rotated by
5 degrees around the image center, then cropped to 512x512, and
finally JPEG2000 compressed and reconstructed at 30 dB PSNR.

Here, A =

[
0.996 −0.087
0.087 0.996

]
and b =

[
23
−21

]
. The ille-

gitimate y in Fig. 4(c) additionally includes malicious tampering.
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Fig. 3. Space-varying two-state lossy channel with affine geometric
transform.

Fig. 4(d) shows the illegitimate y realigned to the original, with
channel states Si labeled red if illegitimate and blue if cropped out
in y. The remainder are legitimate cropped-in states.

The image authentication system described in Section 2 cannot
authenticate legitimate images that have undergone affine warping,
because the side information is not aligned with the corresponding
authentication data. Approaches suggested in the prior art to over-
come this problem involve generating affine-invariant features that
serve as authentication data [7, 8]. These features are usually derived
from large portions of the image or even the whole image. There-
fore, the authentication is less sensitive; i.e. a small amount of tam-
pering cannot be detected. We instead propose that the authentica-
tion decoder estimate the affine warping parameters directly from the
Slepian-Wolf bitstream S(Xq) and the image-to-be-authenticated y
using an EM algorithm. This combination of unsupervised learning
with distributed source decoding is closely related to the learning of
motion vectors in distributed video coding [9].

4. EXPECTATIONMAXIMIZATION

The introduction of learning to the system in Fig. 1 requires a mod-
ification of the Slepian-Wolf decoder block from a joint-bitplane
LDPC decoder [5] to the affine-learning Slepian-Wolf decoder
shown in Fig. 5. As before, it takes the Slepian-Wolf bitstream
S(Xq) and the image-to-be-authenticated y and yields the recon-
structed image projection Xq

′. But it now does this via an EM
algorithm. The E-step updates the a posteriori probability mass
functions (pmf) Papp(Xq) using the joint bitplane decoder and also
estimates displacement vectors for a subset of reliably-decoded pro-
jection pixels. The M-step updates the affine warping parameters
based on the displacement vector distributions, denoted Papp(v) in
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Fig. 4. Test image “Lena” (a) x original, (b) y in legitimate state, (c) y in illegitimate state, (d) channel states Si (red: illegitimate, blue:
cropped-out) associated with the 16x16 blocks of realigned output in (c).
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Fig. 5. Slepian-Wolf decoder with affine warping parameter learn-
ing.

Fig. 5. This loop of EM iterations terminates when hard decisions
on Papp(Xq) satisfy the constraints imposed by S(Xq).

In the E-step, we fix the parameters A and b at their current
hard estimates. The inverse transform is applied to the image y to
obtain a compensated image ycomp. If the affine warping parameters
are accurate, ycomp would be closely aligned to the original image
x in the cropped-in region. We derive intrinsic pmfs for the image
projection pixels Xq as follows. In the cropped-in region, we use
Gaussian distributions centered at the random projection values of
ycomp, and in the cropped-out region, we use uniform distributions.
Then, we run three iterations of joint bitplane LDPC decoding on
the intrinsic pmfs with the Slepian-Wolf bitstream S(Xq) to produce
extrinsic pmfs Papp([Xq ]i = xq).

We estimate displacement vectors for those projection pixels for
which maxxq Papp([Xq ]i = xq) > T = 0.995, denoting this set of
reliably-decoded projection indices as C. We also denote the maxi-
mizing reconstruction value xq to be [xmax

q ]i. (To guarantee that C
is nonempty, we make sure to encode a small portion of the quan-
tized image projectionXq with degree-1 syndrome bits. The decoder
knows those values with probability 1 and includes their indices in
C.) We obtain displacement vector pmfs Papp(v

(i)) for these pixels
by maximizing the following log-likelihood function:

L(A,b) ≡
∑
i∈C

log P ([xmax
q ]i,n

(i), y; A,b)

=
∑
i∈C

log

⎛
⎝∑

m(i)

P ([xmax
q ]i,n

(i), y|m(i); A,b)P (m(i))

⎞
⎠ ,

where n(i) is the set of top-left co-ordinates of the 16x16 projection
blocks Bi in the original image x, and the latent variablem(i) repre-

sents the corresponding set of co-ordinates in y. The latent variable
update can be written as

Qi(m) := P (m(i) = m|[xmax
q ]i, y,n(i); A,b)

= P (v(i) = m− n(i)|[xmax
q ]i, y,n(i); A,b)

≡ Papp(v
(i) = m − n(i)).

In this way, we associate a displacement vector pmf Papp(v
(i)) with

each projection pixel [Xq ]i in C, in a process similar to learning mo-
tion vectors in distributed video coding [9]. For the projection pixel
[Xq ]i, we produce the pmf Papp(v

(i) = v) by matching the pixel to
projections obtained from y through vectors v over a small search
window. Specifically, Papp(v

(i) = v) is proportional to the integral
over the quantization interval of [xmax

q ]i of a Gaussian centered at
the projection of a block displaced by vector v in the image y.

In the M-step, we re-estimate the parameters A and b by hold-
ing the displacement vector pmfs Papp(v

(i)) fixed and maximizing a
lower bound of the log-likelihood function L(A,b):

(A,b)

:= arg max
A,b

∑
i∈C

∑
m(i)

Qi(m
(i)) log P ([xmax

q ]i,n
(i), y|m(i); A,b)

= arg max
A,b

∑
i∈C

∑
m(i)

Qi(m
(i))

(
log P (n(i)|m(i), [xmax

q ]i, y; A,b) + log P ([xmax
q ]i, y|m(i)

k )
)

.

The lower bound is due to Jensen’s inequality and concavity of
log(.). Note also that P ([xmax

q ]i, y|m(i)) does not depend on the
parameters A and b and can be thus ignored in the maximization.
We model P (n(i)|m(i), [xmax

q ]i, y; A,b) as a Gaussian distri-
bution, i.e., (n(i) − Am(i) − b) ∼ N (0, σ2I). Taking partial
derivatives with respect to A and b, and setting to zero, we obtain
the optimal updates:

⎡
⎣ A11 A21

A12 A22

b1 b2

⎤
⎦ := E(GT G)−1E[GT ]

⎡
⎢⎢⎢⎣

...
...

n
(i)
1 n

(i)
2

...
...

⎤
⎥⎥⎥⎦ ,

where

G =

⎡
⎣ · · · m

(i)
1 · · ·

· · · m
(i)
2 · · ·

· · · 1 · · ·

⎤
⎦

T

.
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5. SIMULATION RESULTS

Our experiments use “Barbara”,“Lena”,“Mandrill,” and “Peppers”
of size 512x512 at 8-bit gray resolution. The two-state channel in
Fig. 3 applies a geometric transformation to the images and crops
them to 512x512. Then JPEG2000 or JPEG compression and recon-
struction is applied at 30 dB reconstruction PSNR. In the illegitimate
state, the malicious attack overlays a 20x122 pixel text banner ran-
domly on the image. The text color is white or black, whichever is
more visible, to avoid generating trivial attacks, such as white text on
a white area. The image projection X is quantized to 4 bits, and the
Slepian-Wolf encoder uses a 4096 bit LDPC code with 400 degree-1
syndrome nodes.

Fig. 6 compares the minimum rates for decoding S(Xq) with
legitimate test images using three different decoding schemes: the
proposed EM decoder that learns the affine parameters, an oracle
decoder that knows the parameters, and a fixed decoder that always
assumes no geometric transformation. Fig. 6 (a) and (b) show the
results when the geometric transformations are rotation around the
image center and horizontal shearing, respectively. The EM decoder
requires minimum rates only slightly higher than the oracle decoder,
while the fixed decoder requires higher and higher rate as the geo-
metric distortion increases.
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Fig. 6. Minimum rate for decoding the legitimate test image, “Bar-
bara,” using different decoders.

For the next experiment, we set the authentication data size to
220 bytes and measure false acceptance and rejection rates. The
acceptance decision is made based on the empirical conditional en-
tropy ofXq of the estimated cropped-in blocks. The channel settings
remain the same except that transform parameters A11 and A22 are
randomly drawn from [0.95, 1.05], A21 and A12 from [−0.1, 0.1],
and b1 and b2 from [−10, 10]. The JPEG2000/JPEG reconstruc-
tion PSNR is selected from 30 to 42 dB. With 4000 trials each on
“Barbara”, “Lena”, “Mandrill”, and “Peppers,” Fig.7 shows the re-
ceiver operating characteristic curves created by sweeping the de-
cision threshold of the empirical conditional entropy. The EM de-
coder performs very closely to the oracle decoder, while the fixed
decoder rejects authentic test images with high probability. In the
legitimate case, the EM decoder estimates the transform parameters
A11,A21,A12,A22, b1, and b2, with mean squared error 6.0×10−7,
4.1 × 10−6, 4.2 × 10−7, 1.6 × 10−6, 0.06, and 0.69, respectively.

6. CONCLUSIONS

We have extended our image authentication system to handle im-
ages that have undergone affine warping. Our authentication de-
coder learns the affine warping parameters via an unsupervised EM
algorithm. We demonstrate that an authentication Slepian-Wolf bit-
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Fig. 7. Receiver operating characteristic curves for different de-
coders.

stream of 220 bytes is sufficient to distinguish between legitimate
encodings of warped images and illegitimately modified versions.
The work can be extended to other geometric transformations using
an appropriate M-Step.
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