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ABSTRACT

We present a method to group trajectories of moving objects ex-
tracted from real-world surveillance videos. The trajectories are first
mapped into a low dimensionality feature space generated through
linear regression. Next the regression coefficients are clustered by
a Gaussian Mixture Model initialized by K-means for improved
efficiency. The model selection problem is solved with Bayesian In-
formation Criterion that penalizes models with high complexity. We
demonstrate the proposed approach on both synthetic and real-world
scenes. Experimental results show that the proposed clustering
method outperforms K-means and mixture of regression models,
while also reducing the computational complexity compared to the
latter.

Index Terms— Surveillance video, object trajectories, cluster-
ing

1. INTRODUCTION

The automated analysis of surveillance video and remote sensing
data generates large amounts of trajectories that describe behaviors
of moving objects. Accumulating and analyzing trajectory infor-
mation over time offers valuable information on trends (dominant
behaviors) and abnormal movements (outliers) that cannot be un-
covered by a human operator alone. Fig. 1 shows an example of ac-
cumulated trajectory information that is clustered to identify groups
of objects with similar behaviors. The process of characterizing ob-
ject behaviors can be divided into two main steps, namely feature
representation and feature clustering.

In this paper we present a trajectory analysis method that uses
a trajectory representation based on linear regression coefficients.
The subsequent analysis is performed by GMM clustering initialized
by K-means for improved efficiency. GMM is applied directly on
the regression coefficients. The automatic selection of the number
of clusters is performed using the Bayesian Information Criterion
(BIC).

Fig. 1. Example of trajectory clustering. (Left) Accumulated object
trajectory information over time. (right) Clusters representing the
dominant object behaviors

The paper is organized as follows. Sec. 2 discusses the exist-
ing literature for trajectory analysis. Sec. 3 describes the trajec-
tory representation and the clustering algorithm used in the proposed
method. Experimental results and evaluation are presented in Sec. 4.
Finally in Sec. 5 we draw the conclusions.

2. PREVIOUS WORK

The natural feature space where trajectories lie has a variable dimen-
sionality as targets are observable for different time-spans and mea-
surements are affected by background clutter and sensor noise. To
address this problem, similarity measures that enable the comparison
of vectors with different dimensionality can be used. The Hausdorff
distance [1] and the Longest Common Sub-Sequence (LCSS) [2] are
examples of distances used to compute trajectory similarity. How-
ever, these measures do not explicitly model noise, thus resulting in
poor performances with noisy data [3]. Other methods exist that re-
duce the dimensionality of the data while filtering the noise and pre-
serving important trajectory information. Dimensionality reduction
can be obtained by resampling the trajectories via interpolation to a
predefined number of data-points [4]. In such a way only positional
information is analyzed, not accounting for higher order statistics. A
more descriptive alternative is to represent the main features of a tra-
jectory using Principal Component Analysis (PCA) [5]. Polynomial
approximation has also proved to be effective in smoothing trajec-
tories and in reducing the dimensionality. In particular, Chebyshev
polynomials [6] and regression coefficients can be used [7]. Using
Hidden MarkovModels (HMM), each trajectory is projected into the
feature space defined by the hidden parameters [8, 9]. Recently Tra-
jectory Directional Histograms (TDH) have been proposed to repre-
sent the statistic directional distribution [4], and to complement the
information from resampled trajectories. A performance comparison
between different distances and representations applied to clustering
showed a good performance of PCA in terms of computational ef-
ficiency, accuracy and robustness to noise [3]. Hausdorff and LCS
instead performed poorly on the testing datasets.

Once trajectories are mapped onto an appropriate feature space,
clustering is applied to organize the data into meaningful structures.
Neural networks have been used to learn the main activity patterns in
a scene [6, 10]. A Gaussian Mixture Model (GMM) can be used to
model the intra-cluster trajectory variability [7]. Otherwise, trajec-
tory similarity in the feature space can be used in hierarchical clus-
tering [11]. Starting from single trajectory entities, larger clusters
are formed through merging (bottom-up) [2] or the complete set is
iteratively split into smaller clusters (top-down) using graph cuts [4].
Recently, to alleviate the constraints of standard partitional methods
(e.g., gaussianity or linearity of the model), spectral methods have
been applied to the analysis of trajectories [9, 12]. A summary of al-
gorithms for trajectory analysis and their characteristics is presented
in Tab. 1.
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Table 1. Summary of trajectory analysis algorithms and their application (NS: number of scenarios; NT: number of trajectories used in the
experiments)
Ref. Representation Distance Algorithm Scenarios NS NT
[1] Native 2D time series Hausdorff distance Graph cuts Outdoor surveillance 2 n.a.
[4] Resampled trajectories Euclidean and Graph cuts Traffic monitoring 1 1200

and directional histograms Bhattacharyya (Dominant-set clustering)
[2] Native 2D time series LCSS Hierarchical clustering Outdoor surveillance 1 30
[5] Trajectory segmentation+PCA Euclidean Similarity-based querying Synthetic data n.a. n.a.
[3] PCA Spectral clustering Euclidean Outdoor surveillance + sign language 2 130
[6] Chebyshev polynomials Euclidean Neural network (SOM) Indoor dataset 1 220
[10] Quantized flow vectors Euclidean Neural network (leaky neurons) Outdoor surveillance 1 n.a
[7] Regression coefficients Gaussian Mixture Models Hand tracking data 1 20
[9] Hidden Markov Models Mutual fitness score Spectral clustering Highway + traffic monitoring 2 n.a.
[12] Heuristics based pre-processing Euclidean Two-layer spectral clustering Traffic monitoring 1 467

3. GROUPING TRAJECTORIES

3.1. Trajectory representation

The output of a tracking algorithm can be expressed as a 2-D time
series {(ui, vi)}i=1,...,t that represents the displacement of an object
in the image plane. We represent each dimension independently (1-
D time series) with a set of coefficients from a linear regression.
LetY = {y1, . . . ,yj , . . . ,yN} be a set ofN 1-D time series. Each
time series j has length nj with measurements observed at the points
(or times) xj . The regression of yj on xj [7] is

yj = Xj βj + ej , (1)

where ej ∼ N (0, σ2I) models the error, and the nj × (P + 1) re-
gression matrixXj is a P -th order Vandermonde matrix [7] defined
as

Xj =

⎡
⎢⎢⎢⎣

1 xj1 x2

j1 · · · xP
j1

1 xj2 x2

j2 · · · xP
j2

...
...

. . .
. . .

...
1 xjnj

x2

jnj
· · · xP

jnj

⎤
⎥⎥⎥⎦ . (2)

β = [β0 β1 · · · βP ]T is a vector composed of the unknown
regression coefficients. In case of Gaussian error the optimal solu-
tion is obtained through least squares. The value of P gives the order
of the regression model and defines the dimensionality of the feature
space. The choice of P depends on the desired level of descrip-
tiveness and it is application dependent. For our outdoor surveil-
lance scenarios P = 2 (i.e., a second order polynomial) is appro-
priate. Intuitively this means that a trajectory is defined by position
(β0), speed (β1), and acceleration (β2). Therefore each trajectory
is mapped into a 6-D parameter space, with 3 coefficients for each
coordinate of the Cartesian space (Fig. 2).

3.2. Clustering

Previous approaches define the trajectories as individual time series
generated from a finite mixture model consisting of the linear regres-
sion components (MRM) [7]. Each cluster k is described by a set of
regression coefficients β̂k and by the error σ2

k. The resulting GMM
model is

p(yj |Θ) =

K∑
k=1

αkN (yj |Xjβ̂k, σ2

kI). (3)

where Θ = {α1, . . . , αK , β̂1, . . . , β̂K , σ2

1 , . . . , σ2

K} are the pa-
rameters of the mixture. The intra-cluster variability is modeled by
σ2

k, which represents the trajectory spread in the image plane. Note
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Fig. 2. Trajectory representation with second-order linear regres-
sion. (a) Input trajectories. (b - c) Regression space, visualization of
the trajectory coefficients (color-coded) associated with the horizon-
tal and vertical coordinates, respectively

that σ2

k does not provide information on which regression coeffi-
cients generates the discrepancy from the average trajectory. As we
are interested in modeling the variations of the single regression pa-
rameters, we approximate each trajectory with a different regression
coefficient βj (see Eq. (1)), computed via least squares. Then we
model the trajectory generation in the space of the regression coeffi-
cients as

p(βj |Φ) =

K∑
k=1

αkN (βj |β̂k, Σk). (4)

NowΦ = {α1, . . . , αK , β̂1, . . . , β̂K , Σ1, . . . , ΣK} defines the pa-
rameters of the mixture (as Θ in Eq. (3)). Each cluster is defined
by a centroid, β̂k, and a (P + 1) × (P + 1) covariance matrix, Σk.
Given the number of cluster,K, and the set of trajectories, Y , the set
of parameters, Φ, maximizing the likelihood is selected via EM. In
the following, we will refer to this solution as EM-GMM.

3.3. Initialization and model selection

The final result provided by EM-GMM depends on the initialization
of the parameters. A common method for initialization is to draw the

1478



1500
2000

2500
3000

3500
4000

45001500

2000

2500

3000

3500

4000

4500

0

5

10

x y

z

1000

2000

3000

4000

50001500

2000

2500

3000

3500

4000

4500

0

5

10

15

x y

z

(a) (b)

Fig. 3. Example of clustering results on synthetic data. (a) Input
trajectories; (b) clustering results using EM-GMM with K-means
initialization

starting membership values from an exponential distribution. How-
ever, in this case the EM procedure is likely to terminate in a local
minimum of the likelihood. Multiple runs of EM-GMM with dif-
ferent initializations are necessary to better explore the parameter
space. In order to reduce the complexity and the iterations of EM-
GMM, we use a less complex algorithm to select more promising
locations of a sub-space of Φ. First multiple runs of K-means are
performed. Next the partition with the smallest residual is selected
and the centroids are used as starting point for EM-GMM. This op-
eration speeds up the convergence of the algorithm as multiple runs
of K-means are less time-consuming than GMM runs.

The automatic selection of the number of clusters K (model
selection) is performed using the Bayesian Information Criterion
(BIC) [13]. BIC is a likelihood-based method that penalizes mod-
els with high complexity, depending on the number of parameters
necessary to describe the model. Let L(Y,ΦK) be the likelihood,
after convergence, associated to the cluster parameters ΦK . BIC
chooses the valueK that maximizes

BIC(P ) = log L(Y,ΦK) −
M

2
log(N), (5)

whereM = K−1+K(P +1)(2+P/2) is the number of indepen-
dent parameters in Φ. The likelihood is ideally increasing with the
model complexity; the second term of the r.h.s. of Eq. (5) introduces
a penalty that increases with the complexity as well, thus favoring
models with a lower number of parameters. Although we also tested
V-fold cross validation [14], the increased computational complex-
ity necessary to test multiple data partitions was not compensated by
significant performance improvements.

Fig. 3 shows sample results of EM-GMM with K-means ini-
tialization. EM-GMM with BIC correctly estimates the number of
clusters and their elements. In particular, the trajectory dataset in
the second row is composed of 12 sets of trajectories: 8 sets rep-
resenting slower objects (e.g., pedestrians) and 4 sets representing
faster objects (e.g., vehicles). Although some groups of trajectories
are almost completely overlapping, the proposed algorithm separates
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Fig. 4. Trajectory clustering results for S1. (Left) Trajectory dataset;
(right) the two dominant object behaviors are recognized by EM-
GMM

different object behaviors based on their speed (this information is
encoded in the first order regression coefficients).

4. EXPERIMENTAL RESULTS

In this section we demonstrate the proposed method on real-world
surveillance scenarios. Two standard datasets are used, namely
a highway monitoring scenario (here referred to as S1) from the
MPEG-7 dataset, and a urban traffic surveillance scenario (here
referred to as S2) from the VACE dataset. In S1 (80 trajectories) the
goal is to form two clusters representing the two directions of the
highway. In S2 (158 trajectories) we want to split the data into six
clusters, two clusters for the vehicles in the road and four clusters for
the pedestrians on the sidewalks. Fig. 4 and Fig. 5 show the results
obtained by EM-GMM.

We compare the proposed clustering method (EM-GMM) with
two other clustering algorithms, namely K-means andMRM [7]. For
a fair comparison, the model selection step is disabled in order to
evaluate clustering only. The number of clustersK is given as input
to the three methods. Given the output set of clusters O and the
labeled ground-truth setG, the correctness percentageC(O, G) over
a set of N trajectories is defined as

C(O, G) =
100

N

K∑
i=1

max
j=1...K

(|oi ∩ gj |), (6)

where oi ∈ O is a cluster in the output set, and gi ∈ G is a cluster in
the ground truth set. To achieve independence from the initialization,
each algorithm is run 20 times and the average of C(.) over the runs
is computed. Tab. 2 shows the performance evaluation comparison
according to Eq. (6). To test the robustness of the algorithms the two
datasets were corrupted with Gaussian and uniform random noise.
The values of σ and the amplitude of the uniform noise showed in
Tab. 2 are percentages of the horizontal coordinate range. Further-
more, to evaluate when trackers work at different frame-rates, new
datasets with sub-sampled original data are used. The results on S1
show that the three algorithms achieve satisfactory performance on
simple datasets (the two directions are correctly detected). How-
ever, EM-GMM clearly exhibits better performance than K-means
and MRM in more complex scenarios (S2). It is also noticeable that
the representation based on regression parameters is robust to data
noise and sub-sampling. In both scenarios data corruption does not
significantly reduce the clustering performance.

Regarding the computational complexity, EM-GMM takes 5.9s
to perform 20 runs on S2 (Matlab implementation on a Pentium4
3.2GHz), while MRM and K-means complete the same task in 19.9s
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Table 2. Performance comparison between clustering methods. To evaluate robustness we add noise to and we subsample the input data
(Subsampling Rate (SSR)).

Methods Gaussian noise Uniform noise SSR
1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 2 3

EM-GMM S1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S2 99.4 99.4 99.4 94.9 93.0 82.9 97.5 98.7 98.1 98.1 98.7 97.5 99.4

K-means S1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S2 79.3 77.5 76.3 80.6 79.2 79.8 77.8 77.4 79.8 78.4 80.6 84.2 81.1

MRM [7] S1 99.9 99.8 99.8 99.8 100.0 99.9 99.7 99.8 100.0 99.9 99.6 100.0 100.0
S2 88.9 84.5 87.2 88.2 87.6 88.9 89.1 85.8 83.8 88.1 89.0 87.7 88.8
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Fig. 5. Trajectory clustering results for S2. (a) Trajectory dataset;
(b) trajectory clustering result using EM-GMM; (c)-(h) the main be-
haviors recognized in the scenario corresponding to four groups of
pedestrians walking on the sidewalks (in two directions) and two
groups of vehicles

and 2.0s, respectively. EM-GMM is more efficient than MRM be-
cause of the different computations needed to estimate the likeli-
hood. MRM computes the log-likelihood in the Cartesian space
summing up all the trajectories data points, whereas EM-GMM com-
putes the likelihood on the low-dimensionality space of the regres-
sion coefficients.

5. CONCLUSIONS

We presented an algorithm for clustering object trajectories from
surveillance video. Trajectories are represented by the coefficients
of a linear regression and clustering is performed via a Gaussian
Mixture Model initialized by K-means. The selection of the number
of clusters is automated using the Bayesian Information Criterion.

The algorithm was validated on real-world surveillance scenarios
and compared with alternative clustering approaches. Experimental
results showed that the proposed method outperforms both K-means
and a mixture of linear regression model [7]. Furthermore the com-
putational complexity of the complete method is reduced by 70%
compared with the classical mixture of regression model. Current
work includes the use of homography transformation to account for
scene perspective in order to cluster the trajectories on a top-view
plane.
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