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ABSTRACT

In this paper, we investigate the fusion of several features ex-

tracted from manually-labelled silhouettes. A novel approach

for human gait recognition based on the combination of three

discriminative features, i.e., the area, the gravity centre, and

the orientation of each body component, is also proposed.

Experimental results show that the proposed method exhibits

considerably better performance, in comparison to all exist-

ing methods that use manually-extracted silhouettes.
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1. INTRODUCTION

Gait recognition is a challenging signal processing technol-

ogy for biometric identification [1] that has been developed

rapidly during the past few years. As a biometric trait, gait

has many unique advantages, such as unobtrusiveness, recog-

nition at a distance, and operation using low-resolution im-

ages.

One of the earliest methods for gait recognition based on

the separation of the human body into components was pre-

sented in [2]. In this method, an ellipse is fitted on each com-

ponent of a binary silhouette and it is observed through time.

In [3], a set of silhouettes that were manually extracted

and labelled was used. Using such silhouettes, however, was

shown to have had an adverse impact on the performance

of a gait recognition system, as low-quality, automatically-

extracted silhouettes yielded superior results. This counter-

intuitive finding was due to the existence of correlated seg-

mentation errors in automatically extracted silhouettes. The

above fact indicates that there is a need for further investiga-

tion of gait recognition using manual silhouettes in order to

determine which types of gait information is important.

In [4], the importance of each body component of a walk-

ing subject was investigated using the manual silhouettes of

[3]. A detailed analysis of the role and the contribution of
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each body component was presented and several ways were

proposed for the efficient combination of the results obtained

using the independent body components.

In [5], before the recognition process is applied, sil-

houettes are deformed using a Layered Deformable Model

(LDM). By using this approach, detailed and modeled infor-

mation of the manually silhouettes is obtained. However, the

use of a large number of parameters increase the computa-

tional complexity of the algorithm.

The method proposed in the present paper considers the

fusion of three discriminative component-based features (pa-

rameters): 1) the area of each body component 2) the centre
of each body component, and 3) the orientation of each body

component. The above features are fused based on compo-

nent and temporal weighting. Experimental results show that

the proposed method generally outperforms all other methods

that use manual silhouettes.

2. PROPOSED GAIT RECOGNITION SYSTEM

The NIST/USF HumanID gait challenge database includes

a set of silhouettes in which the subjects were extracted and

their body components were manually labelled [3]. An exam-

ple of an original frame, its corresponding automatically-

extracted silhouette, and manually-labelled silhouette is

shown in Fig. 1. As seen in Fig. 1 (c), eight body com-

ponents (i.e., head, torso, left / right arm, left / right thigh,

and left / right leg) were labelled using different colours.

(a) (b) (c)

Fig. 1. Sample of the USF data set: (a) Original frame,

(b)Automatically-extracted silhouette, (c) Manually-labelled

silhouette.
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Based on these manually labelled silhouettes, features of

body components can be extracted and advanced approaches

for gait recognition can be developed based on the extracted

features. The block diagram of the proposed system is shown

in Fig. 2. Initially, the frames are temporally aligned by re-

sampling each sequence to a constant length. Subsequently,

three features are extracted from each frame of each sequence;

they include both shape and dynamic gait information. Then,

component and temporal weights are calculated. This process

takes temporal information into account during the recogni-

tion process. In the decision stage, distances for each feature

between different subjects are calculated and combined. Fi-

nally, the combined distances are compared and a recognition

decision is reached. In the following sections, each step of the

algorithm will be described in detail.

3. FEATURE EXTRACTION FROM MANUAL
SILHOUETTES

Feature extraction is a very important process in a gait recog-

nition system. In this work, we investigate three main fea-

tures which seem suitable for the capturing of discriminatory

gait information from sequences of manually extracted and

labelled silhouettes.

3.1. Component area

The first feature that we consider is the area Ai of each body

component Ci, i.e., the number of pixels x in Ci. These com-

ponent areas are calculated for each frame of a temporally

normalized sequence, in order to obtain a two-dimensional

feature function, defined as fA(m, n) = Amn, where Amn is

the area for the mth component, m = 1, . . . , M , in the nth

frame, n = 1, . . . , N .

3.2. Component centre

Due to the availability of labelling information for each pixel,

it is possible to calculate the gravity centre gm of each body

component. After calculating the gravity centres, we calcu-

late the vector distances vm between each one of the body

component centres gm and the centre g of the entire silhou-

ette, i.e., vm = gm − g. Subsequently, a two-dimensional

feature function for area information, fV (m,n) = vmn, is

calculated.

3.3. Component orientation

The component centre, described above, reflects the position

of the component with respect to the body centre, while the

positions and distributions of the rest of the pixels remain un-

known; the area gives size information, while shape informa-

tion is disregarded. When the areas and gravity centres of two

corresponding body components in two subjects are identical,

they cannot be discriminated by those two features. In order

Fig. 2. Block diagram of the proposed algorithm

to capture the structure of the silhouettes in a more accurate

way, we extract a third feature - the orientation of each body

component, which is defined as fO(m,n) = omn, where omn

is a vector that denotes the principle orientation of the mth

body component in the nth frame.

4. COMPONENT AND TEMPORAL WEIGHTING

Since, as shown in [4], not all body components have the

same importance, we apply component weighting separately

for each feature. Based on the method in [4], we determine

three sets of weights, arranged in three M -dimensional vec-

tors wCA
, wCV

, wCO
, where M is the number of body com-

ponents.

In our system, all normalized gait sequences consist of

one full gait cycle of length N . Within a gait cycle, however,

the discriminating power of each frame is different, as some

gait stances are more “revealing” than other gait stances. For

this reason, weights are applied on the elements of the feature
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matrixes in the proposed algorithm.

Since the component centre feature reflects the arm’s

swing extent and the stride, the frames in which the subject

is in a striding pose are more discriminative than the ones in

which the subject is standing. Therefore, for fV , greater im-

portance should be put on the temporal positions (i.e., frames)

that correspond to a striding pose. Similarly, the area feature

is more discriminative in the striding-subject frames, because

in the standing-subject frames, a considerable amount of fore-

ground pixels are overlapped, where errors are generated by

using those incomplete areas.

Since the total area of the body fluctuates at the same

pace as the stride, it reflects the discriminating power (namely,

weight) of the frame. Therefore, the total area of the body in

each gallery sequence is calculated and described as:

AT =
[

AT1 . . . ATn . . . ATN

]
(1)

where N is the number of frames in an aligned sequence.

Subsequently, the average body area for each aligned

frame is calculated as:

AT =
1

NG

NG∑
q=1

Aq
T =

[
AT1 . . . ATn . . . ATN

]
(2)

where NG is the number of subjects in the reference database.

Finally, temporal weights for each aligned frame are de-

fined as wτ =
[

wτ1 . . . wτn . . . wτN

]T
, where

wτn =
ATn − min(AT )

max(AT )
, n = 1, 2, ..., N

After having calculated the relative importance of body

components for each one of the features, as well as the relative

importance of gait poses in a gait cycle, we can determine the

relative importance of each body component in each frame.

For the area feature, this can be expressed as:

WA = wCA
· wT

τ (3)

where the weight for the mth component in the nth frame is

calculated as wA(m, n) = wCAm · wτn.

In a similar way,

WV = wCV
· wT

τ (4)

While the component orientation feature reflects only the

orientation information, its discriminating power should re-

main the same in all frames. Therefore, no temporal weight-

ing, i.e., only component weighting, is applied on this feature.

5. DISTANCE CALCULATION AND FUSION

The decision stage of the proposed algorithm involves the

measurement of the dissimilarity between subjects, i.e., the

distances of their corresponding feature functions. We per-

form this calculation separately for each one of the features,

and once the three feature distances are calculated, we com-

bine them into a unique distance that expresses the dissimi-

larity between subjects.

The area feature function fA is scalar, so the energy of

the difference function is suitable for calculating the total area

distance between two subjects:

DA(p, q) =√√√√ 1
MN

M∑
m=1

N∑
n=1

w2
A(m,n) (fp

A(m, n) − fq
A(m,n))2 (5)

where fp
A and fq

A are the two-dimensional area feature func-

tions of the pth (p = 1, 2, ..., NP ) probe sequence and the qth

(q = 1, 2, ..., NG) gallery sequence respectively, and M is the

number of body components that are considered.

The feature function fV (m, n) is a vectors function, of

which the magnitude contains important information. There-

fore, the average Euclidean distance is used for this feature:

DV (p, q) =√√√√ 1
MN

M∑
m=1

N∑
n=1

w2
V (m,n)‖fp

V (m,n) − fq
V (m,n)‖2 (6)

where ‖ · ‖ denotes the Euclidean distance operator.

In the component orientation feature function fO(m, n),
its elements are vectors but only contain orientation informa-

tion, so the difference between two elements should be based

on the angle between the two orientation vectors. In order to

calculate this angle, the scalar product of two corresponding

elements (in position (m,n)) is expressed as:

op
mn · oq

mn = |op
mn||oq

mn| cos θpq
mn (7)

where |op
mn| and |oq

mn| are the magnitudes of vector op
mn and

oq
mn, and θpq

mn is the angle between them. As described in

the previous section, omn is the eigenvector corresponding to

the largest eigenvalue, and its magnitude is normalized to 1.

Therefore, the distance for this feature is calculated as:

DO(p, q) =
M∑

m=1

N∑
n=1

wO(m)
√

1 − (op
mn · oq

mn)2 (8)

Before calculating the total distance, we normalize the

distances for each feature using a min-max normalization

method [6].

The three normalized distances, D̃A, D̃V , and D̃O ,are

combined together to obtain a total distance. Since the impor-

tance of those three distances are different, weights need to

be put on them as well:

D = wAD̃A + wV D̃V + wOD̃O (9)

In this work, the above weight values were selected based on

experimentation. However, the performance of the algorithm

is generally insensitive to small weight variations.
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Probe
Rank 1 Recognition Rate (%) Rank 5 Recognition Rate (%)

BL [3] CBGR [4] LDM [5] FGF BL [3] CBGR [4] LDM [5] FGF

B 46 49 51 56 66 78 73 78
D 23 26 21 29 39 53 43 62
H 9 16 20 34 36 46 44 52
K 12 13 6 15 39 39 39 39

Average 23 27 25 34 45 54 50 58

Table 1. The recognition rates for the proposed and three other existing methods.

6. EXPERIMENTAL RESULTS

For the experimental evaluation of our method, we use the

manually-labelled sequences from the USF database [7]. In

this database, each of the sequences includes one full gait cy-

cle and each manual silhouette is segmented in eight areas. In

the USF data sets, the right arm and right thigh of the sub-

jects are partially occluded in most frames and even entirely

missed in some frames, therefore, in the proposed algorithm,

only the remaining six components are considered. In order

to make a fair comparison, we followed the same experimen-

tal setup as in [3, 4, 5], in which five key data sets are used in

the experiments: Gallery, Probe B, D, H and K, and the num-

bers of subjects in them are 71, 41, 70, 70 and 33 respectively.

In particular, we present results obtained by using each of the

features separately as well as by combining all three features.

These results will be compared with the results of three other

existing methods.

In order to evaluate the performance of the compared

methods, Cumulative Match Scores (CMS) are calculated. In

CMS, a Rank k result denotes the percentage of probe sub-

jects whose corresponding gallery subject is within the top k
matches. In Table 2, average Rank 1 and Rank 5 scores of all

four probe sets obtained using only one feature and using the

combination of the features are shown. As seen, among the

three features, the component orientation yields better results

than the component area and the component centre. The last

row of the table presents the performance of a system based

on the combination of the three features. As seen, the Fusion

of Gait Features (FGF) outperforms any single feature for any

probe set and at any rank.

The best performing of our methods above was also com-

pared with three other methods. Specifically, our FGF method

was compared to the Baseline algorithm (BL) [3], the Com-

ponent Based Gait Recognition (CBGR) method [4], and the

method based on Layered Deformable Model (LDM) [5]. In

Table 1, the proposed and the other three methods’ recogni-

tion rates at Rank 1 and 5 are tabulated. As we can see, at

Rank 1, the proposed method achieves much better results for

all probe sets and a considerably higher average score, com-

pared to all other existing methods. At rank 5, the proposed

method yields equally good or better results for all probe sets,

and the average score is also much higher than that of the

other methods.

Feature Rank 1 (%) Rank 5 (%)

Component Area 16 34

Component Centre 19 46

Component Orientation 26 50

FGF 34 58

Table 2. The average recognition rates of four probe sets for

single and combined features.

7. CONCLUSIONS

This paper proposed a novel gait recognition method that

was applied on manually labelled sequences. The proposed

method uses three discriminative component-based features,

namely, the area and the orientation of body components, as

well as the vector distance between centres of body compo-

nents and the whole body. By combining these three features,

improved performance is achieved in comparison to other

existing methods that use manually extracted silhouettes.
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