
SECURE EXP-GOLOMB CODING USING STREAM CIPHER

Jiantao Zhou, Oscar C. Au, and Amanda Yannan Wu

Department of Electrical and Computer Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong, China
Email: {eejtzhou, eeau, amandawu}@ust.hk

ABSTRACT

In this paper, we propose a secure Exp-Golomb coding
scheme by incorporating with a stream cipher. Different
from the traditional case of using stream cipher where the key
stream is directly XORed with the plaintext, we here use the
key stream to control the switching between two coding con-
ventions (leading zeros and leading ones). Security analysis
results show that the proposed system can provide high level
of security with the same coding efficiency and negligible ad-
ditional cost, compared with a regular Exp-Golomb coding.
This scheme could potentially be applied to the state-of-the-
art multimedia compression systems, e.g., H. 264, to offer
security features.

Index Terms— Exp-Golomb coding, multimedia content
protection, cryptanalysis

1. INTRODUCTION

With the widespread use of multimedia content, the multi-
media security and digital rights management issues have
become increasingly important. A straightforward way to
protect multimedia data is to use the traditional encryption
methods, e.g., AES and RC4, to encrypt the whole data. Nev-
ertheless, encryption of multimedia files has to be carried
out carefully. On one hand, ciphering the complete com-
pressed file may result in excessive computational burden
and power consumption at the decoder and perhaps even
the server/encoder/transcoder. More importantly, multimedia
compressed files typically exhibit well-defined hierarchical
structure that could be exploited in several useful ways, e.g.,
for scalability and transcoding. However, these structures are
not recognizable in the ciphertext, and hence, are wasted.

Recently, the integration of encryption and compression
has attracted more and more attention in the multimedia en-
cryption community [1, 2, 3, 4, 5, 6, 7]. Wu et al. proposed
the Multiple Huffman Tree (MHT) scheme by alternately us-
ing different Huffman trees in a secret order, without influ-

This work was supported by the Innovation and Technology Commis-
sion of the Hong Kong Special Administrative Region, China (project no.
ITS/122/03 and project no. GHP/033/05).

encing the coding efficiency [1]. However, we showed that
this scheme is vulnerable against a chosen-plaintext attack
[2]. Grangetto et al. devised an efficient encryption scheme
by utilizing a randomized arithmetic coding (RAC) [3]. More
recently, Kim et al. suggested the secure AC (SAC) sys-
tem, which is an improved version of the interval splitting
AC [4, 5]. However, we demonstrated that the SAC could be
broken using an adaptive chosen-ciphertext attack with linear
complexity [6].

In this paper, we address the problem of designing a
lightweight encryption scheme using the Exp-Golomb cod-
ing. Different from the Huffman coding, the Exp-Golomb
coding conceptually has infinite alphabet size. In addition, the
special structure of the Exp-Golomb coding enables efficient
encoding and decoding without any table look-up operations.
Due to these nice features, the Exp-Golomb coding has been
adopted in the state-of-the-art video coding standard such as
H. 264. To begin with, we first show the security problem of
an existing encryption scheme based on Exp-Golomb coding
[7]. We then propose a lightweight encryption scheme utiliz-
ing Exp-Golomb coding and a stream cipher. Traditionally,
the stream cipher is used in a way that the plaintext is XORed
with the key stream. However, in the proposed algorithm, we
use the key stream generated by the stream cipher to control
the switching between two coding conventions (leading zeros
and leading ones). Thanks to the nice property of the stream
cipher, we show that high level of security could be provided
with the same coding efficiency and low additional compu-
tational complexity, compared with a regular Exp-Golomb
coding algorithm. In addition, in some practical applications
where only ciphertext-only attack is feasible, we can further
simplify the system without any security degradation.

The rest of this paper is organized as follows. In section
2, we introduce the Exp-Golomb coding and an encryption
scheme based on Exp-Golomb coding. We also show its se-
curity problem under ciphertext-only attack. In section 3, we
give our proposed system, together with performance analy-
sis. Section 4 presents the security analysis of our proposed
system. In section 5, we discuss some practical issues of us-
ing the proposed scheme. Section 6 concludes this paper.

1457978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

2. SECURITY PROBLEM OF THE SCHEME IN [7]

In [7], Lian et al. proposed an Exp-Golomb encryption al-
gorithm (EGEA), which is illustrated in Fig. 1. Each Exp-
Golomb codeword is composed of R leading zeros, one ’1’-
bit separator, and R bits of information Y , where R ≥ 0, as
shown in the second column of Table 1. Let s be an input
symbol to be encoded. The encoding procedure of EGEA is
performed as follows.

Step 1: Encode s using a regular Exp-Golomb coding.
Denote the resulting codeword as 00 · · ·0︸ ︷︷ ︸

R bits

1Y .

Step 2: XOR Y with a key stream K , namely, Z = Y ⊕K .
Step 3: Output the final codeword 00 · · ·0︸ ︷︷ ︸

R bits

1Z .

For the other symbols to be encoded, similar steps could
be conducted to produce the final codewords.

However, it should be noted that it is still not clear how
to treat the codeword ’1’, i.e. the case of R = 0. In other
words, from [7], we do not know whether or not we should
perform XOR operations when we encounter the codeword
’1’. In fact, we show in the following that in both cases there
are serious problems.

Case 1: Do not perform XOR to the codeword ’1’. Note
that in the bit stream generated by Exp-Golomb coding, it
is not difficult to determine the boundary of different code-
words. Since ’1’s are not XORed with the key stream, we
can immediately recover their corresponding symbols. As the
codeword length of ’1’ is 1, we can roughly estimate the prob-
ability of the symbols associated with ’1’ as 2−1. Therefore,
in this case, an attacker can recover almost half of the symbols
by only observing the ciphertext (ciphertext-only attack).

Case 2: Perform XOR to the codeword ’1’. In this case,
the codeword ’1’ may be flipped to ’0’, depending on the key
stream. However, there is a confusion whether a ’0’ is from
the codeword ’1’ or from the leading zeros. This may lead
to the decoding failure. To better demonstrate this, we give a
simple example as follows. Let the symbol sequence to be en-
coded be a0a4a1, and the key stream be 101010 · · · . Hence,
the encoded bit stream is 000100010. However, if the symbol
sequence to be encoded is a12a0a0, it is not difficult to verify
that the encoded bit stream is also 000100010. Therefore, at
the decoder side, it is impossible to distinguish which symbol
sequence is the encoded one.

+Stream
Cipher

Fig. 1. Schematic diagram of the system proposed in [7].

Table 1. Coding convention 1 and Coding convention 2.
Symbol Coding convention 1 Coding convention 2

a0 1 0
a1 010 100
a2 011 101
a3 00100 11000
a4 00101 11001
a5 00110 11010
a6 00111 11011
a7 0001000 1110000
a8 0001001 1110001
a9 0001010 1110010
a10 0001011 1110011
a11 0001100 1110100
a12 0001101 1110101
a13 0001110 1110110
a14 0001111 1110111

...
...

...

3. THE PROPOSED SCHEME

In this section, we present the secure Exp-Golomb coding al-
gorithm, which can be demonstrated in Fig.2. Coding conven-
tion 1 and coding convention 2 are shown in Table 1. Specif-
ically, in coding convention 1, leading zeros are used, while
in coding convention 2, leading ones are used. The only pri-
vate information in this system is the seed used in the stream
cipher, which is assumed to be 128 bits. Let the symbol
sequence to be encoded be S = s1s2 · · · sN , and the first
N bits of the key stream generated by the stream cipher be
K = k1k2 · · · kN . The encoding procedure of the proposed
secure Exp-Golomb coding is as follows.

Coding
Convention 1

Coding
Convention 2

Stream Cipher

K

Final
Bitstream B

S

seed

Fig. 2. Schematic diagram of the proposed scheme.

Step 1: Initialize i = 1. Fetch the ith symbol from S. If
ki = 0, then encode si using coding convention 1. Otherwise,
use coding convention 2 to encode si.

Step 2: Update i = i+1. Go to Step 1 until all the symbols
are encoded.

3.1. Performance analysis

It can be easily seen that the generated bit stream has the same
length as that generated by a regular Exp-Golomb coding,
since in both coding conventions the codeword lengths are the

1458

same for any codes. Therefore, using the secure Exp-Golomb
coding, there is no coding efficiency penalty.

Recall that one unique feature of the Exp-Golomb cod-
ing is that there is no need to store any coding tables in the
encoder and the decoder. The special structure of the Exp-
Golomb coding eases the job of the encoding and the decod-
ing significantly. In the secure Exp-Golomb coding, it could
be easily found that this property is still preserved. In other
words, the encoding and the decoding operations could be
performed without the need of any table look-up operations.

In terms of the speed, since we only need to switch be-
tween two coding conventions according to a key stream, the
encoding and the decoding speed would be almost the same
as that of a regular Exp-Golomb coding. In addition, the ex-
pected codeword length (ECL) of the Exp-Golomb coding is
3, assuming that the occurrence probabilities of symbols are
2−l(ai), where l(·) denotes the length of the corresponding
codeword. Hence, the length of the key stream we need is
only 1/3 of that used in a traditional stream cipher, as for each
symbol we only need one bit to indicate which coding con-
vention is used. The additional overhead mainly lies on the
stream cipher, which in practice could be very efficiently im-
plemented. We will discuss the issue of how to further sim-
plify the complexity of the system under some practical sce-
narios in section 5.

4. SECURITY ANALYSIS

In this section, we evaluate the security of the proposed se-
cure Exp-Golomb coding scheme. The security analysis is
a challenging job for any cryptosystem, since showing ro-
bust against known attacks does not preclude the other un-
known attacks. Therefore, we evaluate the security under
some known attacks, and show that it is secure against these
attacks. More specifically, we use the ciphertext-only attack,
the chosen-plaintext attack and the chosen-ciphertext attack.

4.1. Ciphertext-only attack

In this attack scenario, the attacker can only have access to
the encrypted bit stream. Since the information available to
the attacker is very limited, a very commonly used approach
is the brute-force attack, whose complexity is related to the
key space.

Since the only private information of the proposed system
is the seed used in the stream cipher and it is of length 128
bits, then the key space is 2128, which can ensure satisfactory
level of security for the digital rights management applica-
tions.

Alternatively, the attacker may wish to recover the key
stream K = k1k2 · · · kN used to control the switching be-
tween two coding conventions. Since each ki is one bit, we
can see that the complexity of finding the key stream is 2N . In

order to make this complexity sufficiently large, we impose a
constraint on the input sequence length, i.e.,

N > 128 (1)

which ensures that 2N > 2128. Provided that (1) holds, the
attacker would rather use the brute-force attack to break the
seed used in the stream cipher. Therefore, the key size is suf-
ficiently large to preclude the brute-force attack.

Another large class of ciphertext-only attack is based on
the analysis of statistical properties of the final bit stream B.
Ideally, the bits in the final bit stream should be i.i.d. Oth-
erwise, the dependence between different bits may provide
some information that can be exploited by the attacker to infer
the secret key. It is thus important to investigate the statistics
of B in order to evaluate the practical security of the proposed
system. To this end, we give the following proposition.

Proposition 1: In the final bit stream, p(Bi = 0) =
p(Bi = 1) = 1/2.

Proof: Let C1 and C2 be the events that coding convention
1 and coding convention 2 are used, respectively. We also let

E1 = {Bi is from the leading bits}
E2 = {Bi is from the separator bit} (2)

E3 = {Bi is from the message bits}
Aj = {Bi is from the codeword aj}, for j ≥ 1

We assume that the occurrence probability of ai is p(ai) =
2−l(ai). p(Bi = 0) can then be calculated as follows

p(Bi = 0)

=
2∑

m=1

p(Bi = 0|Cm)p(Cm)

= 1/2
2∑

m=1

p(Bi = 0|Cm)

= 1/2
2∑

m=1

3∑
n=1

p(Bi = 0|Cm, En)p(En)

= 1/2
2∑

m=1

3∑
n=1

∞∑
j=1

p(Bi = 0|Cm, En, Aj)p(En)p(Aj)

= 1/2
[
p(E1) + p(E2) +

∞∑
j=1

(2−j)p(E3)
]

= 1/2 (3)

This completes the proof.
Hence, the numbers of zeros and ones in the final bit

stream B are balanced. In other words, from the first-order
statistics, it is difficult to infer the secret key. Then, the
proposed system is secure against the ciphertext-only attack.

1459

4.2. Chosen-plaintext attack and chosen-ciphertext at-
tack

In [2], a chosen-plaintext attack was proposed to break the
system in [1], with the assumption that the key stream is fixed.
However, for a stream cipher, an important property is that the
same key stream will not be used more than once. Therefore,
even an attacker can somehow find a key stream, it is useless
since it will not be used again. This essentially precludes the
chosen-plaintext attack, as in [2], and the chosen-ciphertext
attack. In section 5, we will elaborate a bit more about how to
generate unique key streams for different encryption sessions.

5. IMPLEMENTATION ISSUES

In this section, we discuss some implementation issues on
the practical applications of the proposed secure Exp-Golomb
coding scheme.

5.1. Some practical issues

Prior to the communications between the encoder and the de-
coder, a common seed, or called main key (MK), has to be ex-
changed between the encoder and the decoder. Note that the
security of the stream cipher heavily relies on the fact that the
same key stream will not be used for more than once. There-
fore, if we use solely MK to generate the key stream used in
different sessions, the security will be greatly degraded.

In addition, in some video applications, e.g., video
surveillance systems, different portions of the video may
have different requirements on the level of security. It is
desirable to apply different levels of security for different
portions of the video.

In order to solve these two problems simultaneously, we
can combine the MK, the time stamp (TS), and the slice index
(SI) to generate a seed used in the stream cipher by utilizing
a hashing function. Namely,

Seed = Left(hash(MK||TS||SI), 128) (4)

where Left(s, i) denotes the first i bits of s; hash(s) is a
hashing function, e.g., SHA-1, which generates 160 bits di-
gest; and s||t denotes the concatenation of s and t. Therefore,
for different frames in different time, even different slices in
one frame, we can use different key streams for encryption.
In addition, due to the combination with the time stamp, we
can easily realize the random access, which is an important
requirement in video surveillance applications.

5.2. How to further simplify the system?

From section 3, we can see that the additional overhead of the
proposed system mainly lies on the stream cipher. It should
be also noted that the adoption of stream cipher is crucial to

resist the chosen-plaintext attack and the chosen-ciphertext
attack. However, in some practical scenarios, only the en-
crypted data is available to the attacker, which essentially pre-
cludes the possibility of the chosen-plaintext attack and the
chosen-ciphertext attack. In this case, we can further simplify
the system by removing the stream cipher. We can exchange
a key stream K1 having length M , which is sufficiently large,
between the encoder and the decoder. Then, we obtain a key
stream by repeating K1, i.e., K ′ = K1K1 · · ·K1. There-
fore, there is no need of using the stream cipher. Then the
complexity of the proposed secure Exp-Golomb algorithm is
almost the same as that of a regular Exp-Golomb algorithm.

6. CONCLUSION

In this paper, we have suggested a lightweight encryption
scheme based on Exp-Golomb coding and a stream cipher.
This algorithm enables us to achieve high level of security
with the same coding efficiency and small additional over-
head, compared with a regular Exp-Golomb coding. Further-
more, we have shown that in some practical scenarios, the ad-
ditional overhead could be made negligible without security
degradation.

7. REFERENCES

[1] C. Wu and C.-C. J. Kuo ”Design of integrated multime-
dia compression and encryption systems,” IEEE Trans.
Multimedia, vol. 7, pp. 828–839, Oct. 2005.

[2] Jiantao Zhou, Zhiqing Liang, Yan Chen, and Oscar
C. Au ”Security analysis of multimedia encryption
schemes based on multiple Huffman table,” IEEE Signal
Proc. Letters, vol. 14, no. 3, pp. 201–204, March 2007.

[3] M. Grangetto, E. Magli, and G. Olmo ”Multimedia se-
lective encryption by means of randomized arithmetic
coding,” IEEE Trans. Multimedia, vol. 8, pp. 905–917,
Oct. 2006.

[4] J. Wen, H. Kim, and J. Villasenor ”Binary arithmetic
coding with key-based interval splitting,” IEEE Signal
Proc. Letters, vol. 13, pp. 69–72, Feb. 2006.

[5] H. Kim, J. T. Wen, and J. D. Villasenor ”Secure arith-
metic coding,” IEEE Trans. Signal Proc., vol. 55, pp.
2263–2272, May 2007.

[6] Jiantao Zhou and Oscar C. Au ”Adaptive chosen-
ciphertext attack on secure arithmetic coding,” Accepted
in IEEE Trans. Signal Proc. 2008.

[7] Shiguo Lian, Zhongxuan Liu, Zhen Ren, and Haila
Wang ”Secure advanced video coding based on selective
encryption algorithms,” IEEE Tran. Consumer Eletron-
ics, vol. 52, no. 2, pp. 621–629, May 2006.

1460

