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ABSTRACT

This paper considers humming-based systems for human ver-

ification and identification. Humming of a target person is

modeled as a Gaussian mixture model, and the matching score

between a target model and humming is computed as the like-

lihood of humming given a target model. Verification is per-

formed by comparing the matching score to the likelihood

given a universal background model, and identification is per-

formed by selecting the best-matched model. The verification

and identification performances are evaluated using various

acoustical features. The experimental results show that linear

prediction cepstral coefficients and perceptually linear predic-

tion coefficients are conducive to verification and identifica-

tion, respectively.

Index Terms— Biometrics, Humming, GMM-UBM

1. INTRODUCTION

This paper considers humming as a biometric characteristic.

Biometric characteristics can be obtained from deoxyribonu-

cleic acid (DNA), face shape, ear shape, fingerprint, gait pat-

tern, hand-vein pattern, hand-and-finger geometry, iris scan,

retinal scan, signature, speech, etc [1]. To the best of the au-

thors’ knowledge, this paper is the first work that evaluates the

performance of humming as a biometric characteristic in ver-

ification and identification systems. Humming conveys little

linguistic information, and thus for verification and identifi-

cation, it is not expected for humming to outperform speech

in verification and identification. However, a humming-based

biometric system may be applicable to a person with speech

disorder and an infant who is not able to speak [2,3]. In terms

of universality, which is an essential criterion to be consid-

ered in a biometric recognition system [1], humming is more

universally available on everyone than speech.

Our experimental results indicate that pitch information

contained in humming is not very useful for human verifica-

tion and identification. Pitch information has shown to be ef-

fective for humming-based music retrieval [4, 5] and speaker

verification [6]. However, pitch contained in humming is
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Fig. 1. Human verification with humming

Fig. 2. Human identification with humming

highly dependent on the melody and not on the person who is

humming. For this reason, the paper considers Mel-frequency

cepstral coefficients (MFCCs), linear prediction coefficients

(LPCs), linear prediction cepstra coefficients (LPCEPSTRA)

and perceptual linear prediction coefficients (PLPs) which are

well-known acoustical features for speech and speaker recog-

nition.

The rest of this paper is organized as follows: Section 2

describes humming-based verification and identification sys-

tems. Section 3 demonstrates our experimental results, and

Section 4 summarizes this paper.
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2. HUMAN VERIFICATION AND IDENTIFICATION
WITH HUMMING

In the system considered, voice activity detection is per-

formed to segment query input into humming and non-

humming intervals, and acoustical features mentioned above

are extracted from the humming interval longer than 0.5s.

2.1. Human Verification with Humming

Fig. 1 illustrates a verification system considered in this pa-

per. Let xT
1 = [x1,x2, . . . ,xT ] be the T -length acoustical

feature sequence. The verification is performed using follow-

ing hypotheses:

• H0: xT
1 is generated from a target person s.

• H1: xT
1 is not generated from a target person s.

For the above hypothesis testing, the Gaussian mixture model

and universal background model (GMM-UBM) [7] is used.

The UBM λU is trained on humming from various people not

included in the target and impostor list. The model of target

person s, λs, is adapted from the UBM λU using enrollment

data of s in the maximum a posterior [8] sense. In the system

considered, an accept/reject decision is made as follows:

p(xT
1 |λs)

p(xT
1 |λU )

H0
>
<
H1

τ, (1)

where τ is a preset threshold.

2.2. Human Identification with Humming

Fig. 2 illustrates an identification system considered in this

paper. Given a set of S target person models {λs|s =
0, 1, . . . , S − 1}, xT

1 is identified as s∗ as follows:

s∗ = argmax
s

p(xT
1 |λs). (2)

3. EXPERIMENTS

3.1. Experimental Setup

The verification and identification performances were eval-

uated on a humming database of 321 min. from 22 male

students: humming was recorded at 16kHz sampling rate us-

ing a microphone embedded in a laptop. The mean and the

standard deviation of the number of hummed song per each

person are 10.9 and 9.8, respectively. We selected 8 targets

whose enrollment data is longer than 6 min. Unless speci-

fied, experimental results in this paper were obtained using

the experimental setting in Table. 1. From humming, we ex-

tracted 39-dimensional MFCC, LPC, LPCEPSTRA, and PLP

which consist of 13 coefficients (12 coefficients + energy),

their delta and delta-delta time difference. In addition, we

Table 1. Experimental Setup

Targets 8 male students

6 min. enrollment data/target person

Trials 1.11s long on average

2 512 and 29 851 true and impostor trials for

verification experiments

1 648 trials from 8 targets for

identification experiments

Acoustic GMMs of 64 kernels for verification and 1 024

model kernels for identification

UBM trained on 22 min. of humming

data that are separate from true and impostor trials.

Fig. 3. DET curves of MFCC, LPC, LPCEPSTRA, PLP, and

pitch.

extracted 4-dimensional pitch information which consists of

pitch, its delta and delta-delta time difference, and long span

pitch [9]. The verification performance is measured in terms

of equal-error rate (EER) and detection error trade-off (DET)

curves, and the identification performance is measure in terms

of identification error rate.

3.2. Experimental Results

3.2.1. Verification

Fig. 3 illustrates the DET curves of MFCC, LPC, LPCEP-

STRA, PLP, and pitch. The LPCEPSTRA performed the

best followed by the PLP, LPCEPSTRA, LPC, and pitch.

Pitch, which has an EER of slightly under 50%, performed
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Fig. 4. EERs of LPCEPSTRA with respect to the amount of

enrollment data and the number of kernels

Fig. 5. EERs of LPCEPSTRA with respect to the average

length of each trial: the vertical bar denotes the 60% confi-

dence interval of EER.

Fig. 6. Identification errors of MFCC, LPC, LPCEPSTRA,

PLP, and pitch

the worst. This indicates that pitch information from hum-

ming is not conducive to human verification. Fig. 4 illustrates

Fig. 7. Identification error of LPCEPSTRA with respect to

the amount of enrollment data and the number of kernels

Fig. 8. Identification error of LPCEPSTRA with respect to

the number of targets.

Fig. 9. Identification error with respect to the average length

of each trial: the vertical bar denotes the 90% confidence in-

terval of the identification error.

the EERs of LPCEPSTRA with respect to the amount of

enrollment data and the number of Gaussian kernels in the
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GMM. The vertical bar denotes the 60% confidence inter-

val of EER, where the false alarm and the miss probabilities

are considered as a binomial statistic:for details, please refer

to [10]. The EER decreases as the amount of enrollment data

increases, and the minimum EER of 23.50% was achieved

when the amount of enrollment data and the number of Gaus-

sian kernel are 6 min. and 64, respectively. Our conjecture

for this is that the amount of data is insufficient to train the

UBM with larger number of kernels than 64. Fig. 5 illustrates

the EERs of LPCEPSTRA with respect to the average length

of each trial. Longer trials are produced by concatenating

short trials whose average length is 1.11s. Consequently, the

number of trials decreases as the average length increases,

and the confidence interval, which is inversely proportional

to the square root of the number of trials, increases as the

average length increases. From Fig. 5, it can be stated that the

EER of 22.13% at 11.54s is better than the EER of 23.01% at

1.45s with 60% confidence. For larger confidence than 60%,

it is required to perform experiments with larger database.

3.2.2. Identification

Fig. 6 illustrates the identification errors of MFCC, LPC, LP-

CEPSTRA, PLP, and pitch. Unlike the verification experi-

ments, the PLP performed the best. The identification error

of pitch is similar to that of random guess, which indicates

that pitch is not conducive to human identification. Fig. 7 il-

lustrates the identification error with respect to the amount of

enrollment data and the number of Gaussian kernels. As in

the case of verification, the identification error decreases as

the amount of enrollment data increases, and the minimum

error of 26.94% was achieved when the number of Gaussian

kernels is 1 024. Fig. 8 illustrates the identification error with

respect to the number of targets. As the number of targets to

be identified increases, the identification error increases. The

identification error is less than 20% for 5 targets which is a

normal family size. Fig. 9 illustrates the identification error

with respect to the average length of each trial. The confi-

dence interval is computed by considering the identification

error as a binomial statistic. Longer trials are produced in

the same manner as in the verification experiment. The iden-

tification error decreases as the average length of each trial

increases. With 90% confidence, the error rate of 19.51% at

14.43s is different from that of 26.94% at 1.45s. For higher

confidence, further experiments are required.

4. CONCLUSION

This paper considered humming-based human verification

and identification systems. The verification and identifica-

tion performances of the system considered were evaluated

with MFCC, LPC, LPCEPSTRA, PLP and pitch. Our ex-

perimental results indicate that pitch, which is conducive to

humming-based music retrieval and speaker verification, is

not conducive to human verification and identification. The

reason for this is that pitch is highly dependent on the melody

of humming and less on the target. In our experiments, LP-

CEPSTRA and PLP performed the best in verification and

identification, respectively. Our future work will focus on

analyzing humming of patients with speech disorder for real

applications.
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