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ABSTRACT
A significant portion of retail shrink is attributed to employ-
ees and occurs around the point of sale (POS). In this paper,
we target a major type of retail fraud in surveillance videos,
known as sweethearting (or fake scan), where a cashier inten-
tionally fails to enter one or more items into the transaction in
an attempt to get free merchandise for the customer. We first
develop a motion-based algorithm to identify video segments
as candidates for primitive events at the POS. We then ap-
ply spatio-temporal features to recognize true primitive events
from the candidates and prune those falsely alarmed. In par-
ticular, we learn location-aware event models by Multiple-
Instance Learning to address the location-sensitive issues that
appear in our problem. Finally, we validate the entire trans-
action by combining primitive events according to temporal
ordering constraints. We demonstrate the effectiveness of our
approach on data captured from a real grocery store.

Index Terms— retail shrink, event recognition

1 Introduction
Retail shrink is one of the topmost concerns on the minds of
retailers. The shrink in stores is approximately 90B USD in
the US and Europe alone. A significant portion of this shrink
is attributed to retail fraud occurring around the Point of Sale
(POS). While human surveillance has long been used to mon-
itor transactions at the POS, it is not generally very effective
and suffers from scalability issues. Data mining is another
technique used to analyze transaction logs (TLOG) to infer
cashiers’ suspicious behaviors based on statistical analysis.
However, these statistical anomalies may not be strongly cor-
related with fraudulent activity.

Recently video analytics have emerged as a promising
technique for cashier fraud detection, thus becoming an ef-
fective approach for retail loss prevention [1, 2]. In this paper
we focus on detecting one major type of retail fraud, known
as sweethearting in the retail industry (or fake scan), using
video analytics. Sweethearting occurs when a cashier pur-
posely covers up the item barcode during the scan or passes
the item around the scanner to avoid registering the item. As
a result, the customer (usually a family member or friend of
the cashier) is not charged for the sweethearted item. Sweet-
hearting fraud is easy to commit but hard to catch, and is thus
considered one of the most problematic types of fraud in retail
sector.

To develop an effective approach for detecting sweet-
hearting, we face a number of challenges. For example, the
movement of the belt, bagging and customer interventions
(Fig. 2), varied cashier behaviors, and low-resolution video
capture, to name a few. Our approach first identify segments
in a video sequence as candidates for primitive events at the
POS by using a motion-based segmentation algorithm. The

algorithm locates motion peaks in the scan region, which are
used to distinguish events in the adjacent regions. The sepa-
rated event segments are successively refined by thresholding,
with temporal length, magnitude of motion and motion pat-
terns taken into account. We then apply spatio-temporal
features to recognize true primitive events from the candi-
dates and prune those falsely alarmed. In particular, we learn
location-aware event models by multiple-instance learning
methodology to address the location-sensitive issues related
to detecting events in a cluttered environment without gener-
ating excessive false positives. Finally, we validate the whole
transaction process by combining primitive events according
to temporal ordering constraints. The combination prob-
lem is formulated as an optimization problem and efficiently
solved by a modified Viterbi algorithm. The final results are
synchronized with the TLOG to flag fraudulent incidents in
surveillance videos.

Definitions A typical process to transact one item at the
POS includes three major actions from the cashier: picking
up an item from the unload area, reading it via the scanner (or
weighing an item if it has no bar code) and then placing the
item on the exit area for bagging. Such a process is referred
as a visual scan in this paper, and the 3 actions in order (i.e
pickup, scan and drop) are the primary primitive events (or
primitives) we consider.

Related work There has been a vast amount of re-
search in event recognition in the computer vision literature,
mostly related to human motion analysis [3]. Motion His-
tory Images (MHIs) ( [4]) are an efficient temporal represen-
tation of human actions that capture both motion and shape.
However it relies on good background subtraction. Recently
spatio-temporal features [5, 6, 7] have drawn a lot of attention
in event recognition and promising results have been reported
in a number of applications such as [8, 9]. In addition, graph-
ical models such as [10], CFG [11] and DBN [12] have been
widely applied to model complex events by combining prim-
itive events.

2 Segmentation of Video Sequences
To detect when events occur in a video sequence, one could
apply a sliding window in time with a fixed scale (or multi-
ple windows with varied scales) as done in [6]. However, this
method is inefficient, and determining the scale (or scales) is
non-trivial in many cases. We therefore develop an efficient
algorithm to segment the video sequence and identify good
candidates for primitives. The candidates can be further veri-
fied by more advanced event recognition algorithms.

The three primitives of interest can be simulated as an
“in/out” process in which a hand or both hands enter and then
exit a region quickly. We place a region of interest (ROI) for
each primitive in the unload, scan and exit areas to capture
this process. The motion pixels obtained by frame differenc-
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ing are counted in each ROI for each frame and normalized
by the area of the ROI. We observe some interesting patterns
in the resulting motion sequences. For example, as illustrated
in Fig. 1(a), most of the pickup (or drop) events display two
peaks with a valley in-between, which faithfully depict the
motion change caused by the interaction between the hand(s)
and the specified region during an event. The valley corre-
sponds to the moment of a short pause when the hand is about
to reach an item (pickup) or to retrieve an item (drop). Note
that the locations of the two peaks roughly correspond to the
start and end time of an event. However, the valley is not al-
ways present if the hand moves too fast without pause, instead
usually leading to a pattern of a single peak. Scan events show
single peak patterns most of the time.
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Fig. 1. (a) Motion sequences of pickup, scan and drop (from top to bottom).

The red boxes show the ground truth of the events. (b) Event dividers. The

peaks identified in the scan motion sequence (green bold lines) effectively

distinguish pickup (blue) events.

While the patterns indicated by the primitive events are
visually identifiable, there is no easy way to segment them
in the motion sequence. Fortunately, the temporal ordering
of the events provides useful hints to help resolve this prob-
lem. Pickup, scan and drop occur sequentially, suggesting
that there is one pickup (and drop) between two consecu-
tive scans (Fig. 1(b)). Our algorithm thus first identifies scan
events by thresholding the scan motion. The motion peak for
each scan is located, and used as a divider to separate pickup
and drop events. For each pre-segmented event, the algorithm
further cuts off the motion sequence over a threshold, and as-
sesses the resulting sub-segment(s) with regard to duration,
magnitude and motion patterns. The details of the algorithm
are skipped here due to limited space.

3 Recognition of Primitive Events
Space-Time Interest Points STIPs [5] are spatiotem-

poral features STIPs that are computed from local image
points with both large intensity change and large variations
in time. They roughly correspond to moments when there is
abrupt motion change, such as stopping or starting. As shown
in Fig. 2, several STIPs are detected near the cashier’s hand

at the moment when the hand is about to reach (pickup) or
drop an item.

The STIPs detector automatically selects spatial and tem-
poral scales with regard to the size and duration of the events.
A spatio-temporal volume is formed for each STIP and fur-
ther divided into grids of cuboids. Histograms of oriented
gradient (HoG) and optic flow (HoF) are computed, normal-
ized and concatenated into a local descriptor for each cuboid.

Figure 2. STIPs detected in one

frame. Each STIP (circle) is associ-

ated with a location (center), spatial

scale (radius) and temporal scale

(not shown here). Several STIPs

are detected near the hands of the

cashier, but many are caused by the

bagging person and the customer.

Bag-of-Features Model Similar to [9], our work
uses Bag of Features (BOF) to represent events. To build a
BOF model for an event, all the spatio-temporal features from
a specified region (Fig.3(a)) are first clustered into k groups
(visual words) based on their similarities. A histogram of the
word occurrence frequency is constructed to form a compact
representation of the event. The new histogram representa-
tion is used for classification with approaches such Support
Vector machine.

Location-aware Event Modeling A drop event
can be considered as an interaction between the cashier’s
hand(s) and the exit area. However, this interaction is un-
oriented, and can occur almost anywhere in the exit area.
This poses a problem for defining an appropriate ROI for the
event model. While an ideal ROI should be large enough
to cover all possible locations of the events to be detected,
it likely includes many irrelevant STIPs that result from the
bagging person or the customer. To alleviate this problem,
we apply the multiple-instance learning technique to build
location-aware event models.

Fig. 3. An event model can be learned from either (a) a single ROI or (b)

multiple overlapped ROIs.

Our key idea is to use multiple overlapped ROIs to cover
the transaction area as much as possible so that each event is
guaranteed to be in one ROI (Fig.3(b)). However, the super-
vised learning paradigm discussed in Section 3 is not suited
for multiple ROIs since the correspondence between events
and ROIs is unknown. Instead, multiple-instance learning
(MIL) has proven effective in resolving problems where cor-
respondences are missing.

Multiple-Instance Learning (MIL) is proposed to solve
the problem of learning from incompletely labeled data. Un-
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like supervised learning in which every training instance is as-
sociated with a label, MIL deals with data where labels (usu-
ally binary, either 0 or 1) are assigned to bags of instances
instead of an individual instance. A positive bag has at least
one positive instance that is related to a concept of interest
while all instances in a negative bag are negative. The goal of
MIL is to learn a model of the concept from the incompletely
labeled data for classification of unseen bags or instances.

Learning event models from multiple ROIs is naturally
connected to MIL in that each event corresponds to at least
one ROI for sure, but the correspondence is not specified. For
each annotated event, we can create a positive bag, the in-
stances of which are the histograms of visual words from all
the ROIs under the BOF representation. Negative bags can
be generated in a similar way by considering those video seg-
ments with sufficient motion change but no primitives anno-
tated in the ground truth. We use the SVM-based MIL algo-
rithms (MIL-SVM) [13] to learn event models for pickup and
drop. Scan events are more limited to a small region so we
only use a single ROI for it.

4 Combining Primitive Events
Graphical models such as HMMs [10], CFGs [11], and
DBNs [12] are commonly used for modeling complex events.
In our case, any two primitive events, especially pickup and
scan, may exist in parallel. It’s not clear how this parallel
structure can be captured by a graphical model. However,
pickup, scan and drop occur in order, usually with short time
gaps. In this section, we propose a novel approach for com-
bining the primitive events into high-level events (i.e. visual
scans) by considering their sequential ordering. In particular,
we explore two types of temporal constraints: 1) time gaps
between consecutive visual scans; and 2) duration of a visual
scan.

(a) Event Combination

Tr(1,:)

Tr(2,:)

Tr(3,:)

Tr(4,:)

Tr(5,:)

(b) Trellis

Fig. 4. (a) Given the primitive events detected, we are interested in identi-

fying a set of disjoint triplets that correspond to the truth in the data. (b) A

lower-triangular trellis formed by all possible triplets.

Let P = {P1, P2 . . . , Pl}, S = {S1, S2 . . . , Sm} and
D = {D1, D2 . . . , Dn} be the pickup , scan and drop
events detected during a transaction, respectively. Also let
[ts(Ei), te(Ei)] denote the start and end time of an event

Ei. An event Ei is said to occur before another event Ej ,
i.e, Ei < Ej , iff ts(Ej) + ε ≥ te(Ei) where ε is a small
non-negative number to tolerate detection errors.

We consider a triplet Tr(i, j, k) as three primitives
(Pi, Sj , Dk) that occur sequentially such that Pi < Sj < Dk

and te(Dk) − ts(Pi) ≤ T . T is a time threshold, which
filters unlikely event candidates. We set T = 10 seconds. For
convenience, we denote a group of triplets sharing primitives
by replacing the corresponding indices by “ : ”. For example,
Tr(3, :, :) stands for all the triplets starting at P3.

Two triplets Tr(i1, j1, k1) and Tr(i2, j2, k2) are disjoint,
iff Pi1 > Pi2 , Sj1 > Sj2 and Dk1 > Dk2 or vice-versa.
Note that this definition allows overlap of primitives in two
consecutive triplets.

Given the above definitions, all the visual scans in a trans-
action can be considered as a sequence of disjoint triplets in
temporal order(Fig.4(a)). Our goal is to identify such a set of
triplets that is close to the true scan sequence as much as pos-
sible. Since time gaps between consecutive visual scans are
short in general, we mathematically formulate the problem as
follows,

Given 3 sets of events (pickup, scan and drop), find a
maximum set of n disjoint triplets in temporal order such that

f(Tr1, T r2, . . . , T rn) =
n∑

i=2

d(Tri−1, T ri) (1)

is minimized.
Here d(Tri, T rj) is the temporal distance between Tri and
Trj given by

d(Tri, T rj) = (|ts(Pj)−ts(Pi)|+|te(Dj)−te(Di)|)/2 (2)

The optimization in Eqn. 1 results in the maximized
throughput of the target subject who invokes the events,
which is encouraged in real-life scenarios (e.g., an employee
who processes items fast will tend to get rewarded). The
problem seems intractable as combinations of disjoint triplets
grow exponentially with the number of primitives. However,
it turns out, with some manipulation, a modified Viterbi al-
gorithm [14] can solve this problem efficiently, in a similar
spirit to HMM.

We generate a sequence of all triplets by concatenating
{Tr(1, :, :), T r(2, :, :), . . . , T r(l, :, :)}. We then construct
a lower-triangular trellis with each triplet being a node, as
shown in Fig.4(b). The trellis has a total of l columns. An
edge is added between two triplets in adjacent columns if they
are disjoint , and assigned a weight as the distance between
the two triplets. Clearly, in such a representation there is
a path for any set of disjoint triplets in temporal order. A
Viterbi-like algorithm can then be applied to find an opti-
mal path that minimizes Eq. 1. Our algorithm differs from
the original Viterbi algorithm in that it considers only con-
strained paths between disjoint triplets. It can be proven that
upon completion of the search, each node (or triplet) is either
isolated (no path to it), or associated with an optimal path
that entails a maximum set of disjoint triplets with minimum
distance. Thus, we can start from the last unisolated node
and backtrace to identify all the triplets corresponding to the
visual scans in a transaction. Due to limited space, we skip
the proof here.
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Event Alg. Precision Recall F-measure

Pickup
SEG 0.42 0.96 0.58
BOF 0.84 ± 0.09 0.90 ± 0.04 0.86 ± 0.05

MIL-BOF 0.87 ± 0.11 0.88 ± 0.04 0.87 ± 0.06

Scan
SEG 0.70 0.99 0.82
BOF 0.88 ± 0.06 0.96 ± 0.03 0.92 ± 0.03

MIL-BOF - - -

Drop
SEG 0.56 0.94 0.71
BOF 0.76 ± 0.09 0.90 ± 0.06 0.82 ± 0.07

MIL-BOF 0.81 ± 0.06 0.91 ± 0.06 0.86 ± 0.05

Visual Scan
COMB(SEG) 0.65 0.93 0.76
COMB(BOF) 0.88 ± 0.05 0.82 ± 0.03 0.84 ± 0.02

COMB(MIL-BOF) 0.92 ± 0.06 0.81 ± 0.05 0.86 ± 0.05

Table 1. Results of primitive event detection from SEG, BOF and MIL-
BOF(using HOF and HOG features). The scan area is relatively small so

only a single ROI was used.

5 Experiments And Results
Data We experimented with 10 videos captured from a

real grocery store. The data involve 5 cashiers and each video
corresponds to one transaction. The number of items in the
transactions varies from 6 to 29 with a mean of 10.7.

We manually annotated the ground truth (start and end
time) for each primitive. The annotations were used to gen-
erate the ground truth for visual scans automatically by the
combination algorithm discussed in Section 4.

We generated 10 data sets by permuting the 10 videos ran-
domly. For each data set, 6 videos were used for training and
the remaining 4 for testing. The results reported below were
all averaged on the 10 data sets.

Event Detection For evaluation, we define the over-
lap percentage of a primitive event and a prediction as their
intersection divided by the duration of the primitive itself. A
primitive event may relate to multiple predictions. We take
the one with the maximum overlap percentage as the correct
match if the percentage exceeds some threshold τ . All the
others are considered as false positives. We counted the false
positives and false negatives for each video, and computed the
precision (p), recall (r) and F-measure (f = 2∗p∗r/(p+r)),
accordingly. We set τ = 0.25 for evaluating the results of the
primitives, and τ = 0.5 for the combined visual scans.

We considered 3 algorithms for primitive event detection:
the segmentation algorithm (SEG), the BOF model with one
single ROI (BOF) and the BOF model with multiple ROIs
(MIL-BOF). We used 3 ROIs for drop events in the exit area,
and 2 ROIs for pickup events in the unload area (Fig.3(b)).
The ROIs were placed in a way to capture the dominant mo-
tion direction for a given event. We also presented the results
of the combination algorithm. COMB(x) denotes the combi-
nation algorithm using input from primitive detector x.

Due to the frequent and large change of background in
the transaction area, we found that HOG features contribute
little to the performance, hence we only reported the results
of different algorithms using HOF features only. As shown
in Table 1, the segmentation algorithm (SEG) achieves high
recall, which offers good input to the spatio-temporal models
(BOF and MIL-BOF). MIL-BOF produces better results
than BOF, especially for the drop events that are notably af-
fected by the bagging person and customers. When combin-
ing all 3 primitive events (using the best results produced by
each detector), MIL-BOF performs the best.

Sweethearting Detection We also tested our algo-

Alg. Precision Recall F-measure

COMB(MIL-BOF) 0.42 ±0.10 0.88 ±0.12 0.56 ±0.12

Table 2. Performance of sweethearting detection using the visual scans

resulted from MIL-BOF.

rithm on another data set (8 transactions) captured from a
grocery store. The TLOG is available for this data set, in-
cluding 209 scanned items 29 random fake scans staged by 2
cashiers. Due to limited space, we only reported the results
of sweethearting detection in Table 2, which were generated
by matching the combined visual scans to the TLOG. The
combination algorithm demonstrates promising capability at
catching sweethearting, though yielding higher false positive
rate.

6 Conclusions
We present an approach based on spatial-temporal features
to detect sweethearting in surveillance videos. Our approach
demonstrates good performance in recognizing checkout-
related events at the POS in the presence of various compli-
cations from the real world. We also propose an approach to
combine sequential primitive events into high-level events.
Currently we are extending our approach to a probabilistic
model to improve its disambiguating ability.
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