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ABSTRACT

Electroencephalogram (EEG) recordings of brain waves have been
shown to have unique pattern for each individual and thus have
potential for biometric applications. In this paper, we propose an
EEG feature extraction and hashing approach for person authentica-
tion. Multi-variate autoregressive (mAR) coefficients are extracted
as features from multiple EEG channels and then hashed by us-
ing our recently proposed Fast Johnson-Lindenstrauss Transform
(FJLT)-based hashing algorithm to obtain compact hash vectors.
Based on the EEG hash vectors, a Naive Bayes probabilistic model
is employed for person authentication. Our EEG hashing approach
presents a fundamental departure from existing methods in EEG-
biometry study. The promising results suggest that hashing may
open new research directions and applications in the emerging EEG-
based biometry area.

Index Terms— biometrics, electroencephalogram (EEG), hash-
ing, dimension reduction, probabilistic algorithm

1. INTRODUCTION

Biometric technologies, referring to those that identify or verify the
identity of a person using physiological (e.g. face and fingerprint) or
behavioral characteristics (e.g., signature and voice), have the poten-
tial to solve many of the security problems. Traditional biometrics,
such as facial patterns, fingerprints, eye irises, hand geometry and
voice patterns, are well known for person authentication or identi-
fication purposes. Despite their widely used, such biometrics have
certain limitations. For example, most of them are prone to forgery.
This motivated researchers to study alternative biometric traits. It
has been shown in previous studies that the brain-wave pattern for
each individual is unique and thus can be used as a biometric [1].
The advantage of biometry from EEG is that it is almost impossible
to duplicate human brain activity. Also, such electrophysiological
biometric traits naturally allow aliveness detection to enhance the
security of a traditional fingerprint-biometric-based system. Some
potential application of EEG-biometry include building access con-
trol, secure information or multimedia access control.

To our knowledge, only a few works have been done in this
emerging area of EEG-based biometry, mainly focusing on person
identification. An identification system consists of two main com-
ponents: EEG feature extraction and classification. Poulos et al.[2]
introduced a method based on spectral analysis of EEG via the Fast
Fourier Transform (FFT) and a neutral network classifier to identify
individuals. Paranjape et al.[1] employed the autoregressive (AR)
modeling of EEG from a single channel and applied discriminant
functions to the AR coefficients for identification. Recently Palania
et al[3] analyzed frequency powers in gamma band Visual Evoked
potential as a biometric together with Elman Neutal Network. These
studies are all for the purpose of person identification. Very recently,

Marcel and Millan first proposed an EEG-based person authentica-
tion system[4], which uses the power spectrum densities as EEG
features and propose a statistical framework based on a Gaussian
Mixture model. It is worth mentioning that person identification and
person authentication are two different types of applications and thus
pose different challenges on decision making of biometry-based sys-
tems. The goal of person identification is to identify an individual
from a group of persons (i.e. matching the biometric features of one
person against all the records in a database), while the goal of person
authentication is to confirm or deny an identity claim by a particular
individual. We are particularly interested in person authentication in
this paper.

We note that current research on EEG-biometry is characterized
by directly modeling or classifying the extracted EEG features (e.g.
AR coefficients). However, it is challenging to extract robust fea-
tures. Also, since the dimension of the features used is generally
huge, feature selection or reduction is an additional challenge for
designing the classifiers or training the statistical models. Realizing
that the problem of image authentication and our problem of per-
son authentication share similar problem formulations and system
requirements, to address these concerns, we propose a fundamen-
tal departure from the existing approaches in EEG-biometry area by
investigating the EEG hashing direction for person authentication.

Image hashing, which is a content-based compact and exclu-
sive feature descriptor of a specific image, has been proved to be
a significant tool in multimedia security applications such as image
authentication. Several hashing schemes based on dimension reduc-
tion techniques, including our Fast Jonson-Lindenstrauss Transform
(FJLT)-based hashing algorithm proposed very recently, have been
recently reported to provide superior performance. Motivated by the
promising applications of the FJLT-based image hashing, in this pa-
per, we present a FJLT-based EEG hashing scheme for person au-
thentication. In Section 2, we first estimate the multivariate Autore-
gressive (mAR) coefficients as a feature set of EEG recordings, and
then a dimension reduction technique FJLT is applied to hash the
mAR coefficients from multiple EEG channels. In Section 3, we de-
scribe the EEG data set collected during motor tasks and present the
results on person authentication when applying the proposed EEG
hashing approach.

2. METHOD

2.1. The multivariate autoregressive model

A single channel autoregressive (AR) model can predict the current
value of a time series from the previous observations of the same
time series. A multivariate AR (mAR) model, however, is a model
that for each value of one time series, the prediction depends not
only on the history of the same time series but also the history of
other time series. A mathematical formulation of mAR model is
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given as

x1(n) =

MX
i=1

a11(i)x1(n− i) + ...

MX
i=1

a1N (i)xN (n− i)

+e1(n)

...

xN (n) =

MX
i=1

aN1(i)x1(n− i) + ...

MX
i=1

aNN (i)xN (n− i)

+eN (n) (1)

where N is the number of time sequences (channels), x1(n) ...
xN (n) represent the current values of each channel. M is the model
order, indicating the number of previous data points used for predic-
tion. ajk(i)’s are mAR coefficients at delay i, and e1(n), ..., eN (n)
represent errors at time n which are modeled as uncorrelated random
variables with zero mean. In a matrix form, we have the mAR model

x(n) =

MX
i=1

a(i)x(n− i) + e(n). (2)

Studies showed that there is particular functional connectiv-
ity between brain regions, mAR modleing of multi-channel EEG
recordings is therefore encouraging, since mAR can capture infor-
mation of the interactions between brain regions which can be used
to enhance the discriminating power between individuals. Previous
work using mAR coefficients as EEG features has been reported
in neurology study, including work by Anderson [5] who extracted
mAR coefficients from EEG as features used to discriminate differ-
ent mental tasks. But very little or no work has been proposed using
mAR coefficients from EEG for person authentication or person
identification purposes.

Under the iid White Gaussian noise assumption, a robust mAR
coefficient estimation can be obtained based on the least-square cri-
teria (Please see the details in [6]).

2.2. Fast Jonson-Lindenstrauss Transform

Although mAR coefficients are very informative, the dimension of
the mAR coefficients extracted from EEG channels is very large.
Hence, it is necessary for us to apply some dimension reduction
techniques, especially in the case that the sample size is small. In
this section, we introduce a recently developed dimension reduction
technique that has been shown to be robust and time-efficient in im-
age processing and other applications [7].

Johnson-Lindenstrauss lemma states that n points in Euclidean
space can be projected down to k = O(ε−2log(n)) dimensions
while incurring a distortion within 1 ± ε in their pairwise distance.
where 0 < ε < 1. Based on this, Alion and Chazelle [8] pro-

posed a new low-distortion embedding of ld2 into l
O(logn)
p , called the

Fast-Johnson-Lindenstrauss-Transform (FJLT), which is faster than
standard random projections and easy to implement.

A FJLT φ = FJLT (n, d, ε, ) is a k × d matrix, where d is
the original dimension number of the original signal, k is a lower
dimension number which is set to be c′ε−2log(n), n is the number
of data points, ε is the distortion rate and c′ is a positive constant real
value. Suppose we employ the 4th order mAR model and estimate
the mAR coefficients from 16 EEG channels, then the feature size is
16 × 16 × 4. In this case we can consider the coefficients at each

matrix as a data points, therefore n = 4 and M = 256. A Fast-
Johnson-Lindenstrauss-Transform can be obtained by a product of
three real valued matrices:

φ = P ×H ×D, (3)

where P and D are random and H is deterministic.

• P is a k-by-d matrix whose elements Pij are drawn in-
dependently according to the following distribution, where
N (0, q−1) means a Normal distribution with zero-mean and
variance q−1,j

Pij ∼ N (0, q−1) with probability q
Pij = 0 with probability 1− q

where

q = min

j
c log2 n

d
, 1

ff
,

for a large enough constant c.

• H is a d-by-d normalized Hadamard matrix with the elements
as:

Hij = d−
1
2 (−1)〈i−1,j−1〉, (4)

where 〈i, j〉 is the dot-product of the m-bit vectors i, j ex-
pressed in binary.

• D is a d-by-d diagonal matrix, where each diagonal element
Dii is drawn independently from {-1,1} with probability 0.5.

With this kind of construction, we can get our intermediate
hash(IH) by FJLT as

IH = φ(Feature) = P ×H ×D × Feature. (5)

Now the original feature vector is mapped into a lower dimen-
sional space with small distortion. However, the size of our inter-
mediate hash is still large. Consider again the 4th-order mAR model
from a 16-channel EEG setting, the size of the original features in
this case is 256 × 4. By setting ε = 0.1 and c = 0.72, we will end
up with an IH with size 100 × 4. This problem can be solved by
Random Weight Incorporation. Similar to the NMF-NMF-SQ hash-
ing scheme proposed in[9], we introduce the pseudorandom weight
vectors {wi}M

i=1, with wi ∈ Rk, and then calculate the final hash as

Hash = {〈IH1, w1〉 , 〈IH2, w2〉 , ..., 〈IHM , wM 〉} , (6)

where IHi is the i-th column vector in IH and < IHi, wi > is the
inner product of IHi and wi. Note that the distance between the
hash vectors IHi and IHj could be distorted by the weight vector,
and hence degrades the classification performance. We sort the ele-
ments of IHi and wi in a descending order before the inner product
and make sure a bigger weight will be assigned to a bigger compo-
nent. By this operation, the perceptual quality of the hash vector is
retained. Finally we end up with a hash vector with length M for
the M -th order mAR model for EEG signals. This hash vector is
very compact and robust, and can capture the essential features of
the original mAR coefficients.

2.3. Authentication Decision

Due to its simplicity and generally good performance in real-world
applications, we apply the naive Bayes model for decision making
in our EEG person authentication system. Naive Bayes model is
particularly attractive when the dimensionality of the feature vari-
ables is relatively high with respect to the sample size of the ob-
servations. Here we assume each element xi of the hash vector X
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Fig. 1. Location illustration of the EEG channels on the scalp. Those
shaded are used for our experiments.

follows a Gaussian distribution and is statistically independent from
each other. For each subject, we train a specific naive Bayes proba-
bilistic model of the hash vector and further use the model for person
authentication.

Based on the training data, we can estimate the parameters θ of
naive Bayes models by maximum likelihood estimation(MLE). Then
the likelihood of a claim is calculated as

P (X|θ) =

MY
i=1

P (xi|θi), (7)

where X is a calculated hash vector with length M .
The person authentication decision will be made as follow:

given a thredhold τ , the claim is accepted if P (X|θ) ≥ τ and
otherwise rejected.

3. EXPERIMENTS AND RESULTS

3.1. EEG Database

The EEG data was collected from four normal subjects while per-
forming motion related tasks. Subjects were seated about two me-
ters away from a large screen, onto which a virtual environment (VE)
was back-projected. The VE consisted of target and distracter balls
rapidly approaching the subject. Subject were asked to interact with
the VE display by ’blocking’ virtual target balls. They were fitted
with an EEG cap (CompumedicsR/NeuroscanR) recording signals
from 19 electrodes. A illustration of the locations of EEG channels
used is shown in Figure 1. EEG data from five tasks of this virtual
reality experiment are collected and then used for person authentica-
tion. The trajectories of balls are different under the five tasks.

Raw EEG recordings are too noisy and should not be analyzed
directly. A denoised EEG data set is obtained by subtracting the
common reference from the EEG and EYE channels, then per-
forming Independent Component Analysis(ICA). The raw data was
collected at 1000Hz whereas the denoised data was obtained by
downsampling the raw data to 250Hz and bandpassing it between
5-100Hz.

3.2. Feature Extraction and Hashing

The EEG signals from 16 channels out of the 19 channels were
used for the analysis, as illustrated in of in Figure 1. The first step

Table 1. Mean and standard deviation of the hash value x3 from
Task 1. S1 to S4 denote subject 1 to 4, respectively.

S1 S2 S3 S4

mean 95.3 129.0 63.0 167.8
std 6.7 26.4 9.5 26.9

Fig. 2. Illustration of the separation of hash values between subjects.

is feature extraction by performing the 4-th order mAR modeling
of the time series from 16 EEG channels. Then the mAR coeffi-
cients are hashed by the proposed FJLT hashing algorithm. Finally,
we obtain a hash vector with length 4, which can be denoted as
X = (x1, x2, x3, x4). To indicate the differences between differ-
ent subjects, in Table 1, we report the mean and standard deviation
of x3 from seven subjects. We can see that they are located around
different centers. To visually illustrate the separating differences of
hash vectors from different subjects, Figure 2 shows a particular an-
gle of the spatial plots of the first three hash values (x1, x2, x3) from
four subjects in Task 1. Points marked by different signs denote the
trials of different subjects. Since the first three hash value are well
separated already, the naive Bayes model based on all 4 hash values
provides a good identification performance.

3.3. Experimental Results

Here we introduce two types of errors that are used for evaluating
a person authentication system: False Rejection(FR), which occurs
when the system refuses a true claimant, and False Acceptance(FA)
which occurs when the system accepts an impostor. The perfor-
mance is usually measured by False Rejection Rate(FRR) and False
Acception Rate(FAR). The average of the two measures is called
Half Total Error Rate(HTER). As described in Section 3.1, for each
motor task we have 11 trials for each subject. We employ the leave-
one-out cross validation approach in calculating the performance.
Each time we train a client model using 10 out of the 11 trials and
the left one trial of the client is used for testing. An impostor set is
created by including 33 trials from the other 3 subjects. This process
is repeated for each trial and for each subject. We heuristically setup
a threshold for each subject. To demonstrate the performance of
the proposed EEG authentication approach, Fig.3 shows one exam-
ple of the log-likelihood (LL) values from one task based on cross-
validation, circles indicate the LL values from the client trials and
the dots are for impostors. The FAR and FRR results based on cross
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Fig. 3. The example Log-likelihood values of the EEG hash vectors
from the client and impostors.

validation are given in Table 2. It is worth mentioning that a 9.1% of
FAR in the table simply means that 1 out of 11 test trials is wrongly
recognized.

The average HTER through five tasks and four subjects is 6.7%
which is encouraging. In Marcel’s work[4], they achieve an average
HTER about 7.1%. Our results are at the same level of accuracy,
though not fully comparable, since different EEG data sets are used.

4. CONCLUSION

This paper has studied the potential of hashing EEG features for
person authentication. We proposed the use of Fast Johnson-
Lindenstrauss Transform for robust EEG mAR coefficients hashing.
We performed EEG experimental validation using a small group of
normal subjects to show the potential of the proposed EEG hashing
approach. Future work will include testing of our approach over a
larger database with more clients and imposters and through differ-
ent mental and motor tasks. Since, to our knowledge, there has been
no work published in hashing of EEG features in the EEG-biometry
area, this encourage us to explore hashing other EEG features, such
as power spectrum densities, wavelet decompositions and so on.
Also since the size of EEG features are often very large and the
EEG trials is often with limited size, efficient dimension reduction
techniques are crucial and worth further investigation in our study.
We will examine other dimension reduction techniques for EEG
hashing.

5. ACKNOWLEDGMENTS

This study was supported by Canadian federal funding agencies
NSERC (under STPGP 365208-08) and CIHR.

6. REFERENCES

[1] J. Benedicenti L. Koles’ Z. Paranjape, R.B. Mahovsky, “The
electroencephalogram as a biometric,” in Proc. Canadian Con-
ference on Electtrical and Computer Engineering, 2001, vol. 2,
pp. 1363–1366.

Table 2. FAR,FRR and HTER in %. S1 to S4 denotes subject 1 to
4, and Average(S) is the average of 4 subjects.T1 to T5 denotes task
1 to 5 and Average(T) is the average of 5 tasks.

S1 S2 S3 S4 Average(S)

FRR(T1) 0 0 0 9.1 2.3
FAR 7.2 3.03 10.8 7.4 7.2

HTER 3.58 1.52 5.4 8.26 4.7

FRR(T2) 9.1 9.1 9.1 9.1 9.1
FAR 8.54 4.1 9.3 3.0 6.2

HTER 8.82 6.6 9.2 6.0 7.6

FRR(T3) 0 0 9.1 9.1 4.5
FAR 3.0 5.2 7.1 9.3 6.2

HTER 1.5 2.6 8.1 9.2 5.3

FRR(T4) 9.1 9.1 9.1 9.1 9.1
FAR 2.7 6.1 8.9 10.5 7,1

HTER 5.9 7.6 9.0 9.8 8.1

FRR(T5) 9.1 9.1 9.1 0 6.8
FAR 6.6 4.5 7.2 7.6 6.5

HTER 7.9 6.8 8.2 3.8 6.7

FRR Average(T) 5.5 5.5 7.3 7.3 6.4
FAR 5.6 5.7 8.7 7.6 6.9

HTER 5.6 5.6 8.0 7.5 6.7

[2] M. Poulos, M. Rangoussi, and N. Alexandris, “Neural network
based person identification using eeg features,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing ICASSP ’99, 15–19 March 1999, vol. 2, pp. 1117–1120.

[3] R. Palaniappan and D. P. Mandic, “Biometrics from brain elec-
trical activity: A machine learning approach,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 738–
742, April 2007.

[4] S. Marcel and J. D. R. Millan, “Person authentication using
brainwaves (eeg) and maximum a posteriori model adaptation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29,
no. 4, pp. 743–752, April 2007.

[5] C. W. Anderson, E. A. Stolz, and S. Shamsunder, “Multivari-
ate autoregressive models for classification of spontaneous elec-
troencephalographic signals during mental tasks,” IEEE Trans.
Biomedical Engineering, vol. 45, no. 3, pp. 277–286, March
1998.

[6] Arnold Neumaier and Tapio Schneider, “Estimation of param-
eters and eigenmodes of multivariate autoregressive models,”
ACM Trans. Math. Softw., vol. 27, no. 1, pp. 27–57, 2001.

[7] X. Lv and Z.J.Wang, “Fast johnson-lindenstrauss transform for
robust and secure image hashing,” in proc. of IEEE MMSP 2008,
2008.

[8] N.Alion and B. Chazelle, “Approximate nearest neighbors and
the fast johnson-liendenstrauss transform,” in Proceedings of the
38st Annual Symposium on the Theory of Computing (STOC),
WA, 2006.

[9] V. Monga and M. K. Mihcak, “Robust image hashing via
non-negative matrix factorizations,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
ICASSP 2006, 14–19 May 2006, vol. 2, pp. II–II.

1448


