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ABSTRACT

In this paper, a new method for logarithmic Quantization Index Mod-
ulation (QIM) is proposed. In this regard a logarithmic function
is first applied to the host signal. Then the transformed signal is
quantized using uniform quantization as conventional QIM to em-
bed watermark data within. Finally using inverse transform the wa-
termarked signal is obtained. The watermark extraction is performed
using minimum distance decoder. The optimum parameter for data
embedding with minimum quantization distortion is derived. Also
the probability of error is analytically calculated and verified by sim-
ulation. Furthermore data hiding using secret key is proposed and
the probability of error is obtained. Simulation results show that
the proposed method outperforms the conventional QIM in terms of
robustness when the perceptual quality of watermarked image for
both methods are similar. Moreover, simulation shows that the pro-
posed scheme has outstanding robustness in comparison with a re-
cent quantization based data hiding method.

Index Terms— QIM, logarithmic quantization, digital water-
marking, Generalized Gaussian Distribution

1. INTRODUCTION

Among many watermarking schemes presented so far, the class of
Quantization Index Modulation (QIM) methods proposed in [1] has
grabbed the attention of researchers due to its good rate distortion-
robustness tradeoffs. According to QIM, the watermark data is em-
bedded by quantizing the host signal features using a set of quan-
tizers, each of which associated with a different message. QIM is a
blind method in which the original signal is not needed to extract the
watermark data. Also, the embedding and extraction functions are
simple and easy to implement.

The main problem of QIM is designing codebooks of the quan-
tizers. Many previously proposed QIM-based data hiding methods
used uniform quantization [2]. The uniform quantization is optimum
when the host signal is uniformly distributed. For the hosts with non-
uniform distributions, there exists a set of optimum quantizer levels,
by the use of which, quantization introduces minimum distortion to
the host signal. Furthermore, uniform quantization results in host-
independent watermark signal. In this manner, the watermark signal
can be easily estimated by averaging on a set of watermarked signals.
Also, by uniform quantization, the perceptual characteristics of the
host signal are not considered and the watermark power is distrib-
uted uniformly within the host signal, which introduces perceptible
distortion in some parts of it. A quantization-based watermarking
approach in the logarithmic domain has been proposed in [3] which
features perceptual advantages. However, in [3], a simple logarithm

function has been used for quantization. Thus, the quantization dis-
tortion cannot be controlled and minimized regarding the host signal
distribution.

Unfortunately, obtaining optimum quantizer levels is rather hard
in general. Furthermore, implementation of such a quantization
scheme is difficult and needs an exhaustive search through quantiza-
tion levels. In this paper, inspired by a standard usually used in the
processing of speech signals called μ-Law [6], we propose a new
method for logarithmic QIM and will call it LQIM throughout this
text. Here, the host signal features are transformed using a logarith-
mic function and then quantized uniformly regarding the watermark
data. The watermarked data is obtained by applying inverse trans-
form to the quantized data. Minimum distance decoder is used to
extract the watermark data. Also, the optimum μ which results in
minimum quantization distortion is obtained analytically accord-
ing to the host signal distribution. Using the proposed method, a
host-dependent watermark will be obtained. Also, as a result of in-
troducing host- dependent watermark, stronger watermark data can
be inserted by LQIM in comparison with Uniform QIM (UQIM)
with similar perceptual quality of watermarked data. The probabil-
ity of error is derived for the proposed scheme by considering the
host signal to follow Generalized Gaussian Distribution (GGD). The
validity of analytical derivations is verified by simulation. Further-
more, data hiding using secret key is proposed and the probability
of error in this case is also derived. Simulation results show the
outstanding robustness of the proposed scheme in comparison with
UQIM and another recent quantization-based algorithm.

2. LOGARITHMIC QUANTIZATION INDEX
MODULATION

Inspired by the μ-Law concept, we propose a logarithmic quanti-
zation by which stronger watermark can be inserted that introduces
less distortion to the host signal. The rational behind the logarith-
mic quantization is that since signal’s amplitudes are more concen-
trated around zero, more step sizes should be devoted to quantizing
smaller amplitudes and less should be associated to the larger am-
plitudes. This also leads to a more uniform signal-to-quantization
error ratio for different amplitudes. In order to perform logarithmic
quantization, the host signal must be transformed using the follow-
ing compression function:

c =
ln(1 + μ |x|

Xmax
)

ln(1 + μ)
(1)

where μ is a parameter defining the compression level and Xmax is
the maximum value of the host signal features. These values should
be known to the decoder. Since the maximum value in the host signal
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may be disorderly large, the maximum value should be defined re-
garding the probability density function (pdf) of the host signal. For
example, we choose the maximum value in a way that the probabil-
ity of larger values is 10−3. It is worth mentioning that when μ tends
toward infinity, the compression function can be proved to reduce to
a simple logarithm function, leading to an approach similar to the
one followed in [3]. The transformed signal is then used for data
embedding. In this regard, the transformed signal is quantized uni-
formly regarding the watermark data similar to the UQIM [1]. The
quantized data is then expanded, in order to obtain the watermarked
signal, as follow:

y = sgn(x)
Xmax

μ
[(1 + μ)z − 1] (2)

where sgn(·) is the sign function and z is the quantized signal. In
order to extract the watermark data, the minimum distance decoder
is used. Minimum distance decoder can be implemented in the orig-
inal domain or the transformed domain. We found, both analytically
and experimentally, that the implementation in the original domain
results in better robustness. The analytical calculation of the proba-
bility of error is discussed in Section 3.2. In this regard zero and one
are embedded in the received signal (r) using the proposed method
resulting in r0 and r1, respectively. The watermark data can be ex-
tracted by the following equation:

m̂ = arg min
i∈{0,1}

‖r − ri‖2
(3)

where m̂ is the extracted watermark data. Decoder needs μ, Xmax

and quantization step size to extract the watermark data. Other de-
coders such as Maximum Likelihood decoder can also be used to
extract data, but here we want to propose a simple one.

3. ANALYSIS OF THE PROPOSED METHOD

3.1. Optimum parameter finding

In order to obtain the optimum value for μ, we should find the wa-
termark power and then minimize it with respect to μ. Consider the
quantization noise to be w. Thus we have z = c + w. For obtaining
the watermark power, we need to find E[‖y − x‖2]. Replacing z by
c + w in (2) we get:

y − x = sgn(x)
Xmax

μ
[(1 + μ)c+w − 1] − x, (4)

y − x = x(1 + μ)w + sgn(x)
Xmax

μ
[(1 + μ)w − 1] − x. (5)

Simplifying the above equation leads to:

y − x = (x + sgn(x)
Xmax

μ
)((1 + μ)w − 1). (6)

From the above equation, E[‖y − x‖2] can be found as

E[‖y − x‖2] = E[(x + sgn(x)
Xmax

μ
)2]E[((1 + μ)w − 1)2]. (7)

In (7) two terms inside the expectations have been considered to
be independent and were found experimentally through scatter plots.
For the first term we have:

E[(x + sign(x)
Xmax

μ
)2] = σ2

x + 2E[|x|]Xmax

μ
+

X2
max

μ2
,

where σ2
x is the host signal variance and the mean is assumed to be

zero. According to the Bennett’s high-rate model for quantization
noise, quantization noise, w, is considered to follow uniform distrib-
ution between [−Δ/2, Δ/2], where Δ is the quantization step size.
Therefore we have:

E[((1 + μ)w − 1)2] =
1

Δ

∫ Δ/2

−Δ/2

((1 + μ)w − 1)2dw.

Here, in order to save space, we have written the compact form rather
than its closed form. By replacing the resultant expectations into
equation (7), the watermark power is obtained. The optimum value
for μ will be obtained by finding the derivative of the watermark
power with respect to μ and equating the result to zero which can be
found numerically.

According to the obtained watermark power, Document to Wa-
termark Ratio (DWR) can be calculated as:

DWR =
E[‖x‖2]

E[‖y − x‖2]
=((1 +

X2
max

σ2
xμ2

)

× (
1

Δ

∫ Δ/2

−Δ/2

((1 + μ)w − 1)2dw))−1.(8)

As seen, when μ become large, the term X2
max/σ2

xμ2 can be
neglected with respect to 1 and thus DWR will be independent of the
host signal variance which leads to a watermark power proportional
to the host signal power, similar to [3]. This is the major advantage
of the logarithmic quantization over uniform quantization in which
the DWR strongly depends on the host signal power.

3.2. Derivation of bit error probability

In this section the probability of error for the proposed scheme
is calculated. We conduct the analysis by considering the water-
marked signal to be sent through an Additive White Gaussian Noise
(AWGN) channel. For the sake of generality, the original signal is
modeled by a Generalized Gaussian Distribution (GGD) defined as:

fx(x; μ, σ, ν) =
1

2Γ(1 + 1
ν
)A(ν, σ)

e
−| x−μ

A(ν,σ) |
ν

(9)

where μ is the mean of the distribution, which we considered to be
zero, σ is the standard deviation, ν is the shape parameter which
describes the exponential rate of decay, Γ(·) is the gamma function
and A(ν, σ) is defined as follows:

A(ν, σ) =

√
σ2Γ(1/ν)

Γ(3/ν)
.

When ν = 1, the GGD corresponds to a Laplacian distribution and
if ν = 2 it corresponds to a Gaussian distribution. The shape para-
meter (ν) is estimated using the method of moments, as follows [4]:

ν = F−1(ξ), ξ =
E(|x|)√

E(x2)

F (ξ) =
Γ(2/ξ)√

Γ(1/ξ)Γ(3/ξ)
. (10)
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The probability of error can be obtained as follows:

Pe =
∞∑

i=−∞
oi

∞∑
m=−∞

∫ Ti+1+2m

Ti+2m

1√
2πσn

e

(n−Ci/2)2

2σ2
n dn (11)

where σ2
n is the noise variance, oi is the probability of occurrence of

the host signal in the interval [C(i−1)/2, C(i+1)/2], which by assum-
ing equal probabilities for zero and one bits, is defined as:

oi =
1

2

∫ C(i+1)/2

C(i−1)/2

1

2Γ(1 + 1
ν
)A(ν, σ)

e
−| x

A(ν,σ) |
ν

dx, (12)

where Ci is:

Ci = sgn(i)
Xmax

μ
[(1 + μ)(|iΔ|) − 1],

and Ti is defined as:

Ti =
Ci/2 + C(i+1)/2

2
.

4. DATA HIDING WITH SECRET KEY

In order to make the proposed method secure, we need to use a se-
cret key for data hiding. In this regard, μ can be selected randomly
around its optimum value. These values will be sent to the receiver
side as a secret key to be used to extract data. In this manner, an
attacker cannot find the quantization pattern due to the random lo-
cation of quantization levels. The size of interval of these values
around the optimum value depends on the level of security a system
desires. Large interval results in a more secure system and conse-
quently more deviation from the minimum distortion that data em-
bedding with the optimum value introduces to the host signal. DWR
of the watermarked data, in this case, can be obtained as:

DWR =

∫ μo+d2

μo−d1

fμ(μ)

(1 +
X2

max
σ2

xμ2 ) 1
Δ

∫Δ/2

−Δ/2
((1 + μ)w − 1)2dw

dμ,

(13)
where fμ(μ) is the distribution of μ, and μo is the optimum μ. As
seen in this equation, the interval around μo can be asymmetric. Also
the probability of error in this case is:

Pe =

∫ μo+d2

μo−d1

fμ(μ)(

∞∑
i=−∞

oi

∞∑
m=−∞∫ Ti+1+2m

Ti+2m

1√
2πσn

e

(n−Ci/2)2

2σ2
n dn)dμ (14)

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed method, we
tested LQIM on different well-known 512 × 512 images including
Lena, Pepper, Baboon, Barbara, F16, etc. However, in order to save
the space we bring the results only for Lena image. The results for
other images were similar. Also, in order to show the advantage of
LQIM, the results are compared with UQIM. In this regard, DCT co-
efficients for each 8 × 8 block were calculated. Data was embedded
in the AC coefficient of each block located in the first row and second

(a) (b)

Fig. 1. Watermarked Lena image (a) using UQIM and (b) using
LQIM.

(a) (b)

Fig. 2. Scaled differences of the original and watermarked Lena
images using (a) UQIM (b) LQIM.

column. We used AC coefficients since they have stronger compo-
nents in the complex part of the image which is more appropriate for
our purpose. The quantization step size for uniform QIM was 22 and
Δ for LQIM was selected equal to 0.11. These values were selected
in order to have a similar perceptual quality for the watermarked im-
age. Since the watermarked images for both methods were so similar
that it was very difficult to recognize their differences perceptually,
we used Watson distance [8] as a metric to evaluate the quality of
watermarked images. The Watson distance for both methods were
about 120. The optimum μ was found equal to 8.4 using the method
described in section 3.1.

The watermarked Lena images are depicted in Fig. 1 for both
UQIM and LQIM. As can be seen, the quality for both methods
is acceptable. Although the PSNR of the watermarked image for
UQIM is 50 dB and for LQIM is 45 dB, their Watson distances and
perceptual qualities are similar. The differences of the original and
watermarked images in a magnified form are shown for both meth-
ods in Fig. 2. In this regard, we scaled the difference into range 0
to 255. As seen, LQIM provides image-dependent watermark which
has strong components in the complex part of the image, which is
hard to see. This allows us to insert strong watermark whereas the
perceptual quality of the watermarked image is kept at acceptable
level, while uniform QIM embeds data uniformly in the whole im-
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Fig. 3. BER(%) vs. SNR for AWGN attack. 4096 bits have been
embedded in Lena image in both methods.

age, that can be seen easily in the less textured part of the image.
Fig. 3 demonstrates the robustness of the LQIM in comparison

with UQIM under AWGN attack. As can be seen, LQIM, as a result
of inserting a stronger watermark, outperforms UQIM. Also, the an-
alytical prediction and empirical results are very close which shows
that GGD models the DCT coefficients well. However, similar to
UQIM, this method suffers from amplifying attacks, which can be
alleviated with Rational Dither Modulation (RDM) [5]. In RDM,
due to varying step sizes, the peak of distortion may be momentarily
large which results in a perceptual impact on the host signal. Using
LQIM, and by selecting a proper μ, this problem can be somewhat
solved. Nonetheless, derivation of such value for μ was beyond the
scope of this paper.

Also, the proposed method was compared with a quantization-
based method proposed in [7] and the results are shown in Fig. 4.
In both methods, the three first components in the first row of the
DCT coefficients, including DC and two AC coefficients, were used
for data embedding. The PSNR of [7] for Lena image was 45 dB
and that of LQIM was 41 dB. Furthermore, the Watson distance for
[7] was 210 and for our method was 170 which shows the better
perceptual quality of our method. As seen, although the quality of
our watermarked image was better than [7], our method shows a
better robustness.

6. CONCLUSION

In this paper, a novel quantizer arrangement for quantization-based
data hiding, called LQIM, was proposed. In this regard, we used a
technique similar to the μ-law standard to transform the host signal
and quantize the data in the transformed domain. Optimum μ was
also found which results in introducing minimum distortion to the
host signal. Using this scheme, stronger watermark can be inserted
in the host signal in comparison with UQIM with the same quality of
watermarked data. Also, data hiding using secret key was proposed
which is similar to the dithering in UQIM. Simulation shows that this
method outperforms UQIM as well as a recent quantization-based
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Fig. 4. BER(%) vs. SNR for AWGN attack. 12288 bits has been
embedded within Lena image in both methods.

data hiding approach in terms of robustness and perceptual quality
of the watermarked data.
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