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ABSTRACT

Without any assumption on the cover source, this paper presents a
complete characterization of all perfectly secure stego-systems that
employ mutually independent embedding operation. It is shown that
for a fixed embedding operation, the only perfectly secure stego-
systems are those whose cover distribution is an element of a linear
vector space with basis vectors determined by the embedding opera-
tion. Moreover, we also prove that such stego-systems are perfectly
secure if and only if the Fisher information with respect to the em-
bedding change rate is zero and thus Fisher information can be seen
as an equivalent descriptor of steganographic security. This result is
important for deriving steganographic capacity of imperfect stego-
systems with covers modeled as Markov chains [1]. It also suggests
that Fisher information could be used for benchmarking.

Index Terms— steganography, perfect security, mutually inde-
pendent embedding

1. INTRODUCTION

In steganography, the sender and receiver communicate by hiding
their messages in generally trusted media, such as digital images,
so that one cannot distinguish between the original (cover) objects
and the objects carrying the message (stego objects). Formally, the
security of a stego-system is evaluated using the Kullback-Leibler
divergence between the distributions of cover and stego objects [2].
Systems with zero KL divergence are called perfectly secure.

Formally, a stego-system is a combination of an embedding al-
gorithm and a cover source. The vast majority of practical stego-
systems hide messages by modifying individual cover elements us-
ing mutually independent embedding operations, e.g., LSB and ±1
embedding, F5 algorithm, perturbed quantization, MMx, stochastic
modulation, and many others (see [3] and the references therein).

In this paper, we provide a complete characterization of per-
fectly secure stego-systems for the class of embedding algorithms
that employ mutually independent (MI) embedding operations. The
cover distributions of all perfectly secure systems form a linear vec-
tor space spanned by distributions determined by the embedding op-
eration. Moreover, we show that perfect security (zero KL diver-
gence) is equivalent to satisfying a simple condition related to Fisher
information. This result suggests that Fisher information can be used
as an equivalent descriptor of steganographic security.
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ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation there on. The views and
conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies, either expressed or
implied, of AFOSR or the U.S. Government.

In Section 2, we introduce the notation and definitions and re-
view some preliminary facts. Section 3 and Section 4 contain the
main results, as well as illustrative examples. Section 5 states the
main results for the special case of Markov chain cover sources. Sec-
tion 6 concludes the paper.

2. NOTATION, PRELIMINARIES, AND ASSUMPTIONS

We use xn
1 � (x1, . . . , xn) ∈ Xn, X = {1, . . . , N} to represent an

n-element cover object, obtained as a realization of random variable
Xn

1 ∼ P where P is the distribution of covers over Xn. Similarly,
the stego object yn

1 � (y1, . . . , yn) ∈ Xn is a realization of random
variable Y n

1 ∼ Qβ , where β is a scalar parameter capturing the
extent of embedding changes (It will be helpful to think of β as the
change rate.).

The definition of steganographic security was given by Cachin [2].

Definition 1 Steganography is perfectly secure iff

d(β) � DKL(P ||Qβ) =
∑

yn

1
∈Xn

P (yn
1 ) log

P (yn
1 )

Qβ(yn
1 )

= 0,

or ε-secure if d(β) ≤ ε.

We assume that the impact of embedding with parameter
β ∈ [0, β0] on the k-th element can be captured using the ma-
trix bi,j(β) � Pr(Yk = j|Xk = i) = δi,j + βci,j , for some
constants ci,j ≥ 0 for i �= j, ci,i = −

∑
j
ci,j , where δi,j is

the Kronecker delta. In a matrix form, Bβ = I + βC, where
Bβ � (bi,j(β)), I is the identity matrix, and C � (ci,j). We fur-
ther assume that embedding operations are mutually independent,
Pr(Y n

1 |Xn
1 ) =

∏n

k=1 Pr(Yk|Xk). By the definition of bi,j , the
matrix Bβ is stochastic,

∑
j
bi,j = 1. Finally, we assume that

bi,i(β) > 0 for all β ∈ [0, β0]. The matrix Bβ represents an
embedding algorithm with MI embedding operation (simply MI
embedding). Many embedding methods can be formulated within
this framework (see examples in Figure 1).

To simplify the language in this paper, we will speak of security
of a cover source w.r.t. a given MI embedding meaning that the cover
source is perfectly secure w.r.t. B, if the resulting stego-system is
perfectly secure. It does then make sense to inquire about all possible
perfectly secure cover sources w.r.t. MI embedding with matrix Bβ .

We now review some results from the theory of ergodic classes
borrowed from [4] that will be later applied to the stochastic matrix
Bβ . For states i, j ∈ X , we call j a consequent of i (of order k)
(i → j) iff ∃k, (Bk

β)i,j �= 0. State i ∈ X is transient if it has a
consequent of which it is not itself a consequent, i.e., ∃j ∈ X such
that (i → j) ⇒ (j �→ i). We say i ∈ X is non-transient if it is a
consequent of every one of its consequents, ∀j ∈ X , (i → j) ⇒
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Fig. 1. Examples of several embedding methods and their ergodic
classes.

(j → i). The set X can be decomposed as X = F ∪ E1 ∪ · · · ∪ Ek,
where F is the set of all transient states and Ea, a ∈ {1, . . . , k}, are
so called ergodic classes. We put two non-transient states into one
ergodic class if they are consequents of each other.

Let matrix Bβ have k ergodic classes. Then, there exist k lin-
early independent left eigenvectors, denoted as π(1), . . . , π(k), of
matrix Bβ corresponding to eigenvalue 1, called invariant distribu-
tions. If π(a)Bβ = π(a), for some a ∈ {1, . . . , k}, then π

(a)
i >

0 for all i ∈ Ea, and π
(a)
i = 0 otherwise. Every other π sat-

isfying πBβ = π is obtained by a convex linear combination of
{π(a)|a ∈ {1, . . . , k}}. For a complete reference, see [4, Chapter
V, §2]. The set of ergodic classes for matrix Bβ depends only on the
set {(i, j)|bi,j(β) �= 0}. Since bi,j(β) = 0 iff ci,j = 0 for i �= j
and bi,i(β) > 0 for β ∈ (0, β0], the structure of ergodic classes
does not depend on β. Moreover, if πBβ = π for some β > 0, then
πC = 0 and thus all invariant distributions are independent of β, be-
cause πBβ′ = πI + β′πC = πI = π. By this reason, we frequently
omit the index β.

3. PERFECTLY SECURE COVER SOURCES UNDER
MUTUALLY INDEPENDENT EMBEDDING OPERATION

In this section, we let matrix B represent an arbitrary MI embed-
ding with k ergodic classes Ea and invariant distributions π(a), a ∈
{1, . . . , k}. The following example describes a construction of per-
fectly secure cover sources w.r.t. B.

Example 2 [Perfectly secure cover sources] Let P (2) be a proba-
bility distribution on 2-element cover objects defined as P (2)(X2

1 =

(i, j)) = π
(a)
i π

(b)
j for some a, b ∈ {1, . . . , k}. Then P (2) is a per-

fectly secure cover source w.r.t. B because

Q
(2)
β

(
Y 2

1 = (i, j)
)

=
( ∑

î

bî,iP (X1 = î)
)( ∑

ĵ

bĵ,jP (X2 = ĵ)
)

=
(
π(a)

B
)

i

(
π(b)

B
)

j
= π

(a)
i π

(b)
j = P (2)(X2

1 = (i, j)
)
,

and thus both distributions P (2), and Q
(2)
β are identical, which im-

plies perfect security. Since this construction does not depend on
the particular choice of a, b ∈ {1, . . . , k}, we can create k2 per-
fectly secure cover sources w.r.t. B. The probability distributions
P (2) obtained from this construction are linearly independent and
form a k2-dimensional linear vector space. By a similar construc-
tion, we can construct kn n-element linearly independent perfectly
secure cover sources w.r.t. B.

We next show that there are no other linearly independent perfectly
secure cover sources w.r.t. B.

Theorem 3 [Mutually independent embedding] There are exactly
kn linearly independent perfectly secure probability distributions P
on n-element covers. Every perfectly secure probability distribution
P w.r.t. B can be obtained by a convex linear combination of kn

linearly independent perfectly secure distributions described in Ex-
ample 2.

Proof It is sufficient to prove that there cannot be more than kn

linearly independent perfectly secure probability distributions P on
n-element covers. We show the proof for n = 2 and later present its
generalization.

We define the following matrices P � (pi,j), pi,j = P (X2
1 =

(i, j)), and Q � (qi,j), qi,j = Qβ(Y 2
1 = (i, j)). By defininition of

MI embedding, we have

qij =
∑

(v,w)∈X2

Qβ(Y 2
1 = (i, j)|X2

1 = (v, w))P (X2
1 = (v, w))

=
∑

v,w∈X

bvibwjpvw.

Define matrix D � (du2

1
,v2

1

) of size N2 × N2, where du2

1
,v2

1

=

bu1,v1
bu2,v2

. If �p is defined as one big row vector of elements pi,j

and similarly �q, then assuming perfect security of cover source w.r.t.
B (P = Q), we have �q = �p D = �p and thus �p is left eigenvector of D

corresponding to 1. Matrix D is stochastic and thus it is sufficient to
show that it has k2 ergodic classes.

We first show that

u2
1

(m)
→ v2

1 ⇔ (u1
(m)
→ v1) and (u2

(m)
→ v2), u2

1, v
2
1 ∈ X 2. (1)

By u2
1

(m)
→ v2

1 we mean that v2
1 is a consequent of u2

1 of order m in
terms of matrix D. If u2

1
(m)
→ v2

1 , then there existm− 1 intermediate
states 1w

2
1 , . . . ,m−1 w2

1 , such that du,1wd
1w,2w · · · d

m−1w,v > 0.
Since du2

1
,v2

1

= bu1,v1
bu2,v2

, this implies the existence of both paths

ui
(m)
→ vi of order m, i = 1, 2. The converse is true by the same

reason.
We show that Ea × Eb, a, b ∈ {1, . . . , k} are the only ergodic

classes. If u1
(m1)
→ v1 and u2

(m2)
→ v2, then u2

1
(m1+m2)

→ v2
1 for all

u1, v1 ∈ Ea and u2, v2 ∈ Eb, because the path from ui to vi can
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be arbitrarily extended by adding self loops of type j → j since all
diagonal terms bj,j are positive and thus by (1) we have u2

1
(m1+m2)

→
v2
1 . Finally by u1, v1 ∈ Ea and u2, v2 ∈ Eb, vi → ui and by the
same argument v2

1 → u2
1, and therefore Ea × Eb are ergodic classes.

Any other state u2
1 ∈ Ea × F ∪ F × Ea ∪ F × F must be transient

w.r.t. D, otherwise by (1) we obtain contradiction with ui ∈ F for
some i.

This proof can be generalized for n ≥ 3 by proper definition
of matrices P, Q, and D. In general, matrix D has size Nn × Nn.
By similar construction we obtain kn ergodic classes of generalized
matrix D, however we know kn linearly independent distributions.

4. PERFECT SECURITY AND FISHER INFORMATION

In this section, we show that for stego-systems with MI embedding
perfect security can be captured using Fisher information. From Tay-
lor expansion of KL divergence, for small β, d(β) = 1

2
β2I(0) +

O(β3) where I(0) = ∂2d(β)/∂β2|β=0 is the Fisher information
w.r.t. β. If for some stego-system d(β) = 0 for β ∈ [0, β0], then
I(0) = 0 from the Taylor expansion. Even though the opposite does
not hold in general, we will prove that for MI embedding zero Fisher
information implies perfect security. In other words, a stego-system
with MI embedding is perfectly secure for β ∈ [0, β0] if and only
if I(0) = 0. This provides us with a simpler condition for verify-
ing perfect security than the KL divergence. Fisher information also
provides a connection to quantitative steganalysis because 1/I(β) is
the lower bound on variance of unbiased estimators of β. Moreover,
I(0) could be used for comparing (benchmarking) stego-systems.

We start by reformulating the condition I(0) = 0.

Proposition 4 Let P and Qβ be probability distributions of cover
and stego objects with n elements embedded with parameter β. The
Fisher information is zero if and only if the FI-condition is satisfied

∀yn
1 ∈ Xn

(
P (Xn

1 = yn
1 ) > 0

)
⇒

( d

dβ
Qβ(yn

1 )
∣∣
β=0

= 0
)
.

(2)

Proof The second derivative of d(β) at β, d′′(β), can be written as

I(β) = −
∑

yn

1
∈Xn

P (yn
1 )

(
Q′′

β(yn
1 )

Qβ(yn
1 )

−
(Q′

β(yn
1 )

Qβ(yn
1 )

)2
)

, (3)

where Q′
β(yn

1 ) = ∂
∂β

Qβ(yn
1 ). By P (yn

1 ) = Qβ=0(y
n
1 ), the first

term in the bracket in (3) sums to zero at β = 0, and thus I(0)
is zero iff Q′

β(yn
1 )

∣∣
β=0

= 0 is zero for all yn
1 ∈ Xn for which

P (n)(yn
1 ) > 0 as was to be proved. Here, we assume the KL

divergence d(β) to be continuous w.r.t. β which is valid by the
construction of the matrix B.

The next theorem shows that the FI condition (2) is equivalent
with perfect security for MI embedding.

Theorem 5 [Fisher information condition] There are exactly kn lin-
early independent probability distributions P on n-element covers
satisfying the FI condition (2). These distributions are perfectly se-
cure w.r.t. B. Every other probability distribution P satisfying (2)
can be obtained by a convex linear combination of kn linearly inde-
pendent perfectly secure distributions.

Proof From Example 2, we know kn linearly independent perfectly
secure distributions. By Taylor expansion of d(β), these distribu-
tions satisfy the FI condition, because d(β) = 0 ⇒ I(0) = 0. It
is sufficient to show that there cannot be more linearly independent
distributions satisfying the FI condition.

Similarly as in the previous proof, we reformulate the theorem
as eigenvector problem and use ergodic class theory to give the exact
number of left eigenvectors corresponding to 1. Again, we present
the proof for the case n = 2 and then show how to generalize it.

If P satisfies (2), then the linear term in the Taylor expan-
sion of Qβ(y2

1) w.r.t. β is zero. By the independence prop-
erty, (Q(yn

1 |x
n
1 ) =

∏n

i=1 Q(yi|xi)), and the form of matrix B

(Bβ = I + βC), condition (2) has the following form

dQβ(y2
1)

dβ

∣∣∣
β=0

= lim
β→0

∑
x2

1
∈X2

P (x2
1)

d

dβ

2∏
i=1

Qβ(yi|xi)

=
∑

x1∈X

cx1,y1
P (x1, y2) +

∑
x2∈X

cx2,y2
P (y1, x2) = 0. (4)

We define matrix P � (pi,j) as pi,j = P (X2
1 = (i, j)) and repre-

sent it as a row vector �p. If we define matrix D � (qu2

1
,v2

1

) of size
N2 × N2 as

du2

1
,v2

1

=

⎧⎪⎨
⎪⎩

cu1,v1
if u1 �= v1 and u2 = v2

cu2,v2
if u1 = v1 and u2 �= v2

0 otherwise,
(5)

and diagonal matrix G � (gu2

1
,v2

1

) of size N2 × N2 as gu2

1
,u2

1

=

−cu1,u1
− cu2,u2

, then equation (4) can be written in a compact
form as �p D = �p G. Both matrices D and G are non-negative by
their definitions.

Let H = I + γ(D − G). If we put γ = (maxu2

1
∈X2 gu2

1
,u2

1

)−1,
then matrix H is stochastic and �p H = �p iff �p D = �p G and thus (2)
is equivalent with an eigenvalue problem for matrix H.

First, we observe that for i �= j cij > 0 iff h(i,a),(j,a) > 0 for all
a ∈ X , because by (5) h(i,a),(j,a) = γd(i,a),(j,a) = γcij (the first
case when u2 = v2). Similarly, for i �= j cij > 0 iff h(a,i),(a,j) > 0
for all a ∈ X (the second case when u1 = v1). This means that
i → j iff (i, a) → (j, a) w.r.t. H for all a ∈ X and similarly
i → j iff (a, i) → (a, j) w.r.t. H for all a ∈ X . This can be
proved by using the previous statement. By this rule used for a given
u2

1 ∈ Ea×Eb, we obtain u2
1 → v2

1 and v2
1 → u2

1 for all v2
1 ∈ Ea×Eb

and thus Ea ×Eb is an ergodic class w.r.t. H. We show that there can
not be more ergodic classes and thus we have all k2 of them. If u2

1 ∈
F ×E , then u2

1 has to be transient w.r.t. H, otherwise we will obtain
contradiction with u1 ∈ F . This is because the only consequents
of order 1 are of type (i, a) → (j, a) or (a, i) → (a, j), therefore
if u2

1 ∈ F × E , we choose v2
1 ∈ X × E , such that v1 �→ u1 (u1

is transient and thus such v1 must exist). State u2
1 must be transient

otherwise u2
1 ↔ v2

1 implies u1 ↔ v1 which results in contradiction
with v1 �→ u1. Similarly for u2

1 ∈ E × F ∪ F × F .
This proof can be generalized for n ≥ 3 by assuming larger

matrices P, D, G, and H, obtaining exactly kn linearly independent
perfectly secure distributions satisfying the FI condition.

Next, we discuss the structure of the set of invariant distributions
for a given MI embedding and show how to find ergodic classes
from matrix B in practice. By Theorem 2.1 from [4, Chapter V,
page 175], this can be done by inspecting the matrix limit M =
(mi,j) = limn→∞

1
n

∑n

i=1 Bi. According to this theorem, state i

1431



is non-transient iffmi,i > 0 and is transient otherwise. We put two
non-transient states i, j ∈ X into one ergodic class ifmi,j > 0. All
rows of the matrix M corresponding to states in one ergodic class
Ea are the same and equal to the invariant distribution of this class,
π(a).

This section is closed with a short discussion of two practical
embedding algorithms. For the F5 embedding algorithm [5], the set
of states X = {−1024, . . . , 1024}. By the nature of the embedding
changes (flip towards 0), there is only one ergodic set E1 = {0} and
F = X \ {0}. Thus, there is only one invariant distribution, π0 = 1
and zero otherwise. Obviously, no message can be embedded in
covers with this singular distribution.

For the case of LSB embedding over X = {0, . . . , 255}, we
have Ea = {2a, 2a + 1} for a ∈ {0, . . . , 127}, F = ∅ and π

(a)
2a =

π
(a)
2a+1 = 1

2
and zero otherwise (LSB embedding cannot be detected

in images with evened out histogram bins). Thus, sources realized
as a sequence of mutually independent random variables with such a
distribution are the only perfectly secure sources w.r.t. LSB embed-
ding. Figure 1 shows examples of matrices B and ergodic classes of
several known algorithms with MI embedding operation.

5. APPLICATION TOMARKOV COVER SOURCES

In this section, we reformulate the results obtained so far for a spe-
cial type of cover sources that can be modeled as first-order station-
ary Markov Chains (MC). The results play a key role in proving
the square root law of steganographic capacity of imperfect stego-
systems for Markov covers [1, 6].

First, for stationary cover sources Theorem 3 leads to this im-
mediate corollary.

Corollary 6 There are exactly k (instead of kn) linearly indpendent
perfectly secure stationary cover sources. These sources are i.i.d.
with some invariant distribution πa, a ∈ 1, . . . , k.

The next corollary states that in order to study perfect security
of n-element stationary MC covers, it is enough to study only 2-
element covers.

Corollary 7 Let P , Qβ be first-order stationary MC cover distri-
bution and its corresponding stego distribution after MI embedding
with parameter β. For a given n ≥ 2, an n-element stego-system
is perfectly secure iff the corresponding stego-system narrowed to
2-element cover source is perfectly secure for some β0 > 0:

∃β0 > 0, ∀y2
1 ∈ X 2 P (2)(X2

1 = y2
1) = Q

(2)
β0

(X2
1 = y2

1). (6)

Moreover, the FI condition for Markov sources simplifies to

∀y2
1 ∈ X 2

(
P (2)(X2

1 = y2
1) > 0

)
⇒

( d

dβ
Q

(2)
β (y2

1)
∣∣
β=0

= 0
)
.

(7)

Proof Because invariant distributions do not depend on β, Equation
(6) must be valid for all β > 0 once it holds for some β0 (see the
arguments at the end of Sec. 2). By Corollary 6, if the stego-system
is perfectly secure (n ≥ 2), then the cover source is i.i.d. with some
invariant distribution w.r.t. MI embedding and thus (6) and (7) hold.
On the other hand, if (6) and (7) hold for n = 2 and stationary
cover source, then this cover source is i.i.d. with one of k invariant
distributions. This completes the proof since 2-element marginal is
sufficient statistics for a first-order stationary MC.

6. CONCLUSION

Most practical stego-systems for digital media embed messages by
making independent changes to individual cover elements. In this
paper, we fix the embedding operation and then inquire in which
cover sources the embedding is statistically undetectable in Cachin’s
sense. The main contribution of this paper is a complete geometric
characterization of such sources. Using the theory of ergodic classes,
we show that all cover sources that are perfectly secure with respect
to mutually independent embedding form a vector space spanned by
invariant distributions determined by the embedding operation.

Additionally, we showed that perfect security of stegosystems
with mutually independent embedding is completely captured using
Fisher information formulated in Section 4 as the FI condition. This
result not only provides a simpler and equivalent condition for per-
fect security, but it finds further applications in steganalysis. For
example, Fisher information could be used for benchmarking such
stego-systems, a direction we intend to pursue in our future research.
Moreover, Fisher information provides fundamental lower bounds
on the variance of unbiased estimators of the change rate, which
connects our results to problems in quantitative steganalysis. Finally,
the FI condition plays a key role in proving the square root law of
steganographic capacity of imperfect stego-systems [1, 6].
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