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ABSTRACT

This paper proposes codes that achieve the fundamental capacity
limits of digital �ngerprinting subject to mean-squared distortion
constraints on the �ngerprint embedder and the colluders. We �rst
show that the traditional method of �ngerprint decoding by thresh-
olding correlation statistics falls short of this goal: reliable perfor-
mance is impossible at code rates greater than some value C1 that is
strictly less than capacity. To bridge the gap to capacity, a more pow-
erful decoding method is needed. TheMaximum Penalized Gaussian
Mutual Information decoder presented here meets this requirement.
Finally, a mathematical framework and a capacity expression for �n-
gerprinting of social networks are presented.

Index Terms: Digital �ngerprinting, coding, decoding

1. INTRODUCTION

Digital �ngerprinting systems can be used for traitor tracing
and digital rights management applications. A length-N real-
valued signal is to be protected and distributed to M users. K
users collude and process their copies to create a forgery that
contains only weak traces of their �ngerprints. This prob-
lem was �rst posed by Cox et al. [1] who proposed the use
of Gaussian �ngerprints for this purpose. Their �ngerprints
were drawn randomly from an i.i.d. (independent and iden-
tically distributed) Gaussian distribution; the �ngerprint code
is shared with the decoder but not revealed to the users.

A fundamental question is what are the optimal perfor-
mance limits for detection of colluders. To make the problem
nontrivial, one may assume embedding distortion constraints
on the �ngerprinter and the colluders. Example of this anal-
ysis include [2–4] for the case of signals de�ned over �nite
alphabets, and [5,6] for the case of real-valued signals. In the
latter case, a possible strategy for the colluders is to perform a
uniform linear average of their copies and add i.i.d. Gaussian
noise. Other strategies involve nonlinear attacks [6–9].

In our model, the decoder returns a list of guilty users. It
is assumed that the decoder has access to the host signal (non-
blind detection) but knows neither the collusion strategy nor
even the number of colluders. However the maximum pos-
sible number of colluders is Kmax, and the decoder knows

Research supported by NSF grants CCF 06-35137 and CCF 07-29061.

Signal

S

Forgery 

Y

+

+

+

fingerprints

Attack 

Channel

U1

U2

UM

+

UK

X1

X2

XK

XM

),...,|( 1 KxxyA

Fig. 1. The �ngerprinting process and the attack channel.

that value. The cost functions of interest are the probabili-
ties of false positives and false negatives, which should van-
ish as N → ∞, for any admissible collusion strategy. A
simpli�ed version of this problem was analyzed in [6] and
a mutual-information game was solved, but no coding sys-
tem was proposed. An upper bound on �ngerprinting capac-
ity was derived in [4], but no coding scheme was given that
would achieve this bound in the Euclidean setting.

Notation: we use boldface uppercase letters to denote
random vectors, uppercase letters for the components of the
vectors, and calligraphic fonts for sets. The symbolE denotes
mathematical expectation. The restriction of a collection of
vectors {x1, . . . ,xM} to its components k ∈ K is denoted
by xK = {xk, k ∈ K}. The symbol f(N) ∼ g(N) denotes
asymptotic equality: lim

N→∞
f(N)
g(N) = 1. The Gaussian distribu-

tion with mean zero and covariance matrix R is denoted by
N (0, R). The N × N identity matrix is denoted by IN .

2. PROBLEM STATEMENT

Themathematical setup of the problem is diagrammed in Fig. 1.

2.1. Fingerprint Generation and Embedding

The host signal is a sequence S = (S(1), . . . , S(N)) in RN ,
viewed as deterministic but unknown to the colluders. Fin-
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gerprints are added to S, and the marked copies of the signal
are distributed to M users. Speci�cally, user m is assigned a
marked copy Xm = S + Um where m ∈ {1, . . . , M} and
Um ∈ RN is the �ngerprint assigned to user m.

The �ngerprintsU1, · · · ,UM form a (N, M) �ngerprint-
ing code C. The rate of the code is RN = 1

N log M . In a
typical signal �ngerprinting application, N ∼ 103 − 109 and
M ∼ 2 − 109 (not to exceed the number of humans).

The code C is selected independently of S from a random
ensemble of spherical codes, C , such that

‖Um‖2 = ND1, ∀m,

i.e., the mean-squared embedding distortion is equal to D1.
The random ensemble C is permutation-invariant, i.e., C ∈
C ⇒ πC ∈ C where π is a permutation of {1, · · · , N}, and
all N ! permutations have the same probability. Moreover, C
is invariant to permutation of the users.

2.2. Attack Model

Denote by K ⊆ {1, 2, · · · , M} the coalition, i.e., the index
set of the colluders. Their coalition has cardinality K ≤ M .
They select a memoryless collusion channel A(y|xK). An
example is the uniform averaging attack followed by addition
of Gaussian noise with mean zero and variance D2:

Y =
1
K

∑
k∈K

Xk + W (1)

where W ∼ N (0, D2).
The colluders pass their �ngerprinted sequencesxK through

the channel A and output a pirated copy, or forgery, Y ∈
RN . (Thememoryless assumption can be relaxed and is made
solely to simplify the exposition.) The following two con-
straints on A de�ne a feasible set A (D2) of collusion chan-
nels.

(A1) Location-Invariant constraint:

A(y|xK) = A(y − s|(x − s)K).

(A2) Expected Mean-Squared Distortion constraint:

σ2(A) � E

(
Y − 1

K

∑
k∈K

Xk

)2

≤ D2.

The model (A1) precludes attacks involving �ltering of
host signal components. The motivation for this restriction
is that it considerably simpli�es the mathematical derivation
and does not require a statistical model for the host S. The re-
striction is relatively mild if embedding is done in a transform
domain in which the components of the host S are approxi-
mately independent and are large relative to the embedding
distortion. The motivation for (A2) is that distortion is best

measured relative to the host S, but S is not known to the
coalition, so we replace S by its best linear unbiased esti-
mate, 1

K

∑
k∈K Xk. The expected mean-squared distortion is

at most D2.
The analysis will show that optimal collusions satisfy the

fairness property

A(y|xπK) = A(y|xK)

i.e., all members of the coalition incur the same risk. The at-
tack of (1) is feasible and fair, and so are the nonlinear attacks
of [9].

2.3. Decoder

Since the host signal S is available at the decoder, it can be
subtracted from Y to form the centered data Y − S. The
decoder outputs an estimated coalition

K̂ = gN (y − s) (2)

where gN is independent of s. If the decoder returns ∅, no
user is accused. Most decoding rules in the �ngerprinting
literature are based on thresholding the correlation statistics
uT

m(y− s), 1 ≤ m ≤ M . As we shall see, such decoders are
always suboptimal.

2.4. Error Probabilities and Capacity

By our location-invariant assumptions (A1) and (2) on the
collusion channel and the decoding regions, the probability
of false positives (accuse an innocent user) and the probabil-
ity of false negatives (fail to catch any colluder):

PFP (A) � Pr[K̂ \ K �= ∅], PFN (A) � Pr[K̂ ∩ K = ∅],

are independent of s. To simplify notation, we will thus as-
sume without loss of generality that s = 0. By design of C ,
these error probabilities are also independent of K.

A �ngerprinting code rate R is said to be achievable if
there exists a sequence of (N, 2NR) codes such that both
supA∈A (D2) PFP (A) and supA∈A (D2) PFN (A) vanish as
N → ∞. Fingerprinting capacity is the supremum of all
achievable rates [4]. Hence capacity describes the fundamen-
tal limits on the parameters (N, M, K, D1, D2) for any reli-
able �ngerprinting system.

3. MUTUAL-INFORMATION GAME

Our coding scheme is related to the solution to the following
mutual-information game. The expression for C(K) below
is a simple variation on a result by Wang and Moulin [6].
Let PXK(D1) be the set of all pdf’s of the product form
pXK(xK) =

∏
k∈K pX(xk) where pX satis�es EX2 ≤ D1.
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Proposition 3.1 The values of the maxmin mutual-information
games

C(K) = sup
pXK∈PXK (D1)

inf
A∈A (D2)

1
K

I(XK; Y ),

C1(K) = sup
pXK∈PXK (D1)

inf
A∈A (D2)

I(X1; Y )

are respectively given by

C(K) =
1

2K
ln
(

1 +
D1

KD2

)
, (3)

C1(K) =
1
2

ln
(

1 − D1/K2

D1/K + D2

)−1

(4)

where C1(K) ≤ C(K), with equality if and only if K = 1.
For both games, the supremum over pXK is achieved by the
product Gaussian pdf with varianceD1, and the in�mum over
A is achieved by the uniform averaging attack of (1).

Note that even if the decoder knew K , Prop. 3.1 does
not imply that the maximum-likelihood decoder tailored to
the minimizing channel of (1) performs satisfactorily against
all feasible channels. For instance, to show that C(K) is an
achievable rate, one must construct a decoder that achieves
vanishing error probabilities for any rate below C(K), for all
feasible collusion channels. Candidate decoders are examined
in the next two sections. Also note that the converse theorem
of [4] states that no rate greater than C(K) is achievable. The
proof of this theorem was given for �nite alphabets but ap-
plies to Euclidean alphabets as well.

We now study the performance of rate-R random spher-
ical codes whose 2NR �ngerprints are drawn independently
and uniformly from the N -dimensional sphere with squared
radiusND1. Two decoders are studied in Secs. 4 and 5 below
and achieve rates C1(Kmax) and C(Kmax), respectively.

4. SIMPLE THRESHOLDING DECODER

The normalized empirical correlation coef�cient between two
sequences x and y in RN is de�ned as ρ(x,y) = x·y

‖x‖ ‖y‖ .
A simple decoder is the thresholding rule

m ∈ K̂ ⇔ ρ(xm,y) > η (5)

with threshold η. Since the code is spherical, (5) is equivalent
to a thresholding rule on the unnormalized correlation statis-
tics xm · y, 1 ≤ m ≤ 2NR. We choose an arbitrarily small
ε > 0 and let η = η1(Kmax)−ε, see de�nition of η1(·) below.

False Negatives. To analyze PFN , �rst note that the ran-
dom variables 1

N Xm · Y (for all m ∈ K) and 1
N ‖Y‖2 con-

verge in probability to their expectations D1
K and D1

K +σ2(A),
respectively, for any fair collusion attack, Gaussian or not [9].
Hence ρ(Xm,Y) converges in probability to

ρ(Xm, Y ) =

√
D1/K2

D1/K + σ2(A)
≥
√

D1/K2

D1/K + D2
� η1(K)

for any fair attack channel and any m ∈ K. For general
(possibly nonfair) channels A ∈ A (D2), we can show that
maxm∈K ρ(Xm,Y) converges in probability to
maxm∈K ρ(Xm, Y ) ≥ η1(K) ≥ η + ε. Hence

PFN (A) = Pr

[
max
m∈K

ρ(Xm,Y) < η

]

vanishes for all rates and for all channels A ∈ A (D2).
False Positives. For any �xed innocent user m /∈ K, Xm

and Y are independent, and Shannon’s formula for the vol-
ume of a spherical cap yields [11]

Pr[ρ(Xm,Y) > η] .= 2−nEcap(η), m /∈ K
where Ecap(η) = − 1

2 log(1 − η2) � τ . By the union bound
we have

PFP = Pr [∃m /∈ K : ρ(Xm,Y) ≥ η]
≤ (2nR − K)Pr[ρ(X,Y) ≥ η]
.= 2−n(Ecap(η)−R)

where X ∼ N (0, D1 IN ) is independent of Y. Hence PFP

vanishes for R < Ecap(η). Moreover

Ecap(η) ↑ Ecap(η1(Kmax)) = C1(Kmax)

as ε → 0. Since ε can be chosen arbitrarily small, PFP van-
ishes for R < C1(Kmax). It may also be shown that PFP

tends to 1 for R > C1(Kmax), hence reliable decoding is
impossible at those rates.

5. JOINT FINGERPRINT DECODER

At rates R > C1(Kmax), the number of �ngerprints that sat-
isfy ρ(Xm,Y) > η1(Kmax) is of the order of 2N(R−C1(Kmax)),
and all these �ngerprints would trigger false alarms for the
thresholding decoder of Sec. 4. Also note they are strongly
correlated with the �ngerprints of the guilty users.

The key idea to improve decoding performance is to per-
form a joint decision on the guilt of a candidate coalition in-
stead of separate decisions on its individual members. The
problem is in many ways analogous to the problem of decod-
ing for the multiple-access channel [10], as further developed
in [4]. The developments below are based on these concepts.

5.1. Empirical Gaussian Mutual Information

The mutual information (m.i.) between two Gaussian random
variablesX and Y with normalized correlation coef�cient ρ is
given by I(X ; Y ) = − 1

2 log(1 − ρ2) [10]. If Xk, k ∈ K, are
iidN (0, D1) and Y =

∑
k akXk +W where

∑
k ak = 1 and

W ∼ N (0, D2) is independent of {Xk}, the m.i. between
XK and Y is given by

IG(XK; Y ) = −1
2

log

(
1 −

∑
k∈K

ρ2(Xk, Y )

)
. (6)
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If ak ≡ 1
K then (6) does coincide with K C(K) in (3). If

XK, Y are non-Gaussian, then (6) will be termed “Gaussian
m.i.” instead of m.i. Now we de�ne the empirical Gaussian
m.i. between two sequences xK ∈ RN×K and y ∈ RN as

ÎG(xK;y) � −1
2

log

(
1 −

∑
k∈K

ρ2(xk,y)

)
. (7)

5.2. Decoder

De�neK (ε) as the set ofK such that the �ngerprintsxk, k ∈
K have absolute normalized correlation at most equal to ε:

1
nD1

|xk · xl| ≤ ε, ∀k �= l ∈ K. (8)

By convention, the empty coalition ∅ is an element of K (ε).
For our random spherical codes, for any �xedK and arbi-

trarily small ε, it follows from the weak law of large numbers
that (8) holds with probability approaching 1 as N → ∞.

Let τ = C(Kmax) − ε. Our proposed decoder outputs
K̂ that maximizes the maximum penalized Gaussian mutual
information (MPGMI) criterion

˜MPGMI(K) = ÎG(xK;y) − Kτ (9)

over allK ∈ K (ε). By convention, M̃PMI(∅) � 0. Roughly
speaking, the MPGMI decoder of (9) favors �ngerprints that
are strongly correlated with the forgery, but (i) these �nger-
prints must be nearly uncorrelated since K ∈ K (ε) and (ii)
large coalitions are penalized linearly in the coalition size K .
These two conditions are key to ensure vanishing PFP .

5.3. Achievable Rates

The analysis of PFP and PFN is considerably more involved
than it was for the decoder of Sec. 4. We refer the reader to [4]
for a closely related analysis in the case of �nite alphabets.
Some key steps of the derivations are outlined below.

First, the random variable ÎG(xK;y) converges in proba-
bility to its expectation, IG(XK; Y ) ≥ K C(K), as N → ∞.
This property is used to establish that PFN vanishes as N →
∞, for all feasible collusion channels.

Second, PFP is upper bounded by applying the union
bound to all possible false-positive error events: K̂ = A ∪ B
where A �= ∅ and B are sets of innocent and guilty users,
respectively:

PFP ≤
∑
B⊆K

∑
|A|≥1

2N |A|R Pr[ÎG(XA;YXB) > |A|τ ].

It may be shown that each probability in the right side van-
ishes as 2−N |A|τ . Hence PFP vanishes for all R < τ . The
maximum possible value of τ is C(Kmax). Hence reliable
decoding is possible at all rates below C(Kmax).

Also observe that C1(K) ∼ C(K) ∼ D1
2(ln 2)K2D2

as
K → ∞. Hence, for large K , the simple decoder is nearly as
good as the more complex joint decoder.

6. SOCIAL NETWORKS

Assuming that every coalition is possible, there are

(
2NR

K

)
≈ 2NKR coalitions of size K . However colluders are usually
acquaintances, i.e., they are part of some social network. It is
interesting to study how this constraint affects capacity. We
assume a simple social network model in which relations are
represented by a graph with 2NR nodes (one for each user)
and edge connectivity bounded by some constant c at each
node. That is, each user has up to c acquaintances. The num-
ber of possible coalitions is then upper bounded by c! 2NR

which is considerably smaller than 2NKR for K ≥ 2 and
NKR � log c!. Assuming the social network is known to
the decoder, the capacity analysis can be easily revisited to
account for that constraint. The set K (ε) of feasible coali-
tions for the MPGMI decoder of (9) has size of the order of
c! 2NR. The union bound used in the proof of the direct cod-
ing theorem involves only c! 2NR terms instead of 2NKR. As
a consequence, the maximum achievable rate is Kmax times
larger than before. It may also be shown that no rate larger
than Kmax C(Kmax) is achievable, using a simple modi�ca-
tion of the converse theorem of [4]. Hence capacity is Kmax

times the value ofC(Kmax) given by (3), which is rather sub-
stantial. We emphasize that the social network is assumed to
be known to the decoder in this analysis.
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