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ABSTRACT

In this paper, a robust perceptual audio hashing system is pre-

sented. A model of the human auditory system is used to

extract robust features from the outputs of a non-linear filter

bank that mimics the human basilar membrane. Experiments

on various audio excerpts show that this new ear-based front-

end processing provides very effective hash values. The pro-

posed audio hashing system performs very satisfactorily in

identification and it turned out very resilient to a large variety

of severe audio attacks.

Index Terms— audio hashing, ear model, filter bank, au-

dio attacks, hash value, bit error rate.

1. INTRODUCTION

The increasing of audio material leads to the need of iden-

tifying a given audio clip throughout a huge database or

metabase without a specific retrieval method. One method

consists of using hash functions to extract a hash value (fin-

gerprint) which ensures both content integrity and ease of

identification. Such functions are used to obtain a final binary

representation of the corresponding audio clip. However,

many of the conventional hash functions are not efficient

in such multimedia applications due to content-based au-

dio signal representation. In this paper, we propose a new

framework which summarizes a given long audio signal into

a concise and robust signature sequence called hash value.

For this purpose, a model of the human auditory system is

used to extract robust features from the outputs of a non-

linear filter bank that mimics the human basilar membrane. A

perceptual audio hashing function is then obtained to reflect

the perceptual component of the content. Such perceptual

hash functions can be used for several applications such as

searching an audio record related to a specific track (artist,

title, etc.). Other possibilities include content identification,

copyright-related applications to prove rightful ownership,

monitoring the distribution, indexing multimedia libraries,

detecting content attacks, etc. An ideal audio hashing system

should fulfill several requirements. It should be as invariant

as possible under severe signal degradations such as com-

pression. The size of each hash value must be short enough

in order to be stored in a database while providing a content

sufficient to characterize and to identify an individual audio

document. Hence, an audio hashing system must derive a

set of significant perceptual features of a recording in a ro-

bust and concise form. The most important requirements

according to [2] include the discrimination power over huge

numbers of other hash values, the robustness, the efficacy of

the representation, and the less computational complexity.

Haitsma et al. [4] extract 32-bit sub-hash values for every

frame of a specific audio excerpt of 3 seconds. These frames

are overlapped using a 31/32 Hanning window with the same

overlapping factor. Through a Fast Fourier Transform the out-

put is then shared out between 33 logarithmically spaced fre-

quency bands. The resulting hash value is computed by com-

paring adjacent energy bands. Such results were combined to

build a method providing a hash value of an audio-visual clip

using only the audio-content signal part [1].

Three perceptual audio hashing algorithms are proposed

in [6]. Two of them use periodicity-based hash functions that

exploit the periodicity measured by either a least-squares es-

timation or by a correlation-based analysis. The third algo-

rithm uses the time-frequency domain transform, namely the

MFCC-based feature extraction method. An alternative so-

lution, proposed in [3], consists of using a balanced multi-

wavelets transformation for each audio frame using 5 decom-

position levels. The hash values are computed by comparing

the mean of log variances of each audio frame for each sub-

band. Several perceptual audio hashing algorithms found in

the literature are summarized in [2].

This paper is further organized as follows. In section 2,
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the main objectives and technical requirements of our sys-

tem are outlined. Next, in section 3, we present the proposed

auditory-based framework that permits the computation of the

features providing robust hash values. Then, in section 4, the

experimental results are presented and discussed. Finally, in

section 5, we conclude our work.

2. GOALS

As mentioned previously, an audio hashing system must obey

several requirements. As two different signal-based content

audio clips may include the same information according to

the human auditory sense, it is interesting to build an efficient

audio hashing system that mimics the human auditory system.

Herein, we propose a new framework using the ear model.

For a given audio clip A, let Â denotes a modified recording

of this clip which is perceptually the same as A. Let B a

perceptually different audio clip. HK(.) represents a hash

function secured by the subscript secret key K and takes as an

input the excerpt audio signal. Therefore, an attacker cannot

forge the audio signature. Our aim is to achieve the following

probabilities:

Pr[HK(A) = HK(Â)] ≈ 1, (1)

and

Pr[HK(A) = HK(B)] ≈ 0. (2)

Throughout this paper, we use the Hamming distance,

normalized by the size of the hash, as a metric to prove the

robustness of the proposed audio hashing system submitted

to severe audio attacks. Let D(., .) denotes this metric. Two

thresholds, Tl and Th, have been defined to decide if two

audio clips are perceptually the same or not [5][3].

D(HK(A), HK(Â)) ≤ Tl, (3)

and

D(HK(A), HK(B)) ≥ Th. (4)

where Th > Tl. The lower threshold Tl is used as a crite-

rion to evaluate the robustness under audio attacks. The up-

per threshold Th allows evaluating the discrimination power

of a given audio hashing system. The thresholds used in our

experiments are given in section 4.

3. PROPOSED ROBUST AUDIO HASHING SYSTEM

The human auditory system (HAS) consists of three parts

which simulate the behavior of the ear. As depicted in Fig.

1, the external and middle ear are modeled using a bandpass

filter that can be adjusted to signal energy to take into account

the various adaptive motions of ossicles. The next part of the

model simulates the behavior of the basilar membrane (BM),

the most important part of the inner ear, that acts substantially

as a non-linear filter bank. Each location along the BM has a

specific frequency, at which it vibrates maximally for a given

input sound. In our experiments we have considered 32 filters.

This number depends on the sampling rate of the signals (16

kHz) and on other parameters of the model such as the over-

lapping factor of the bands of the filters, or the quality factor

of the resonant part of the filters. The final part of the model

deals with the electro-mechanical transduction of hair-cells

and afferent fibers and the encoding at the level of the synap-

tic endings. In order to not over-emphasize the problem of

electro-mechanical transduction in hair cells and fibers, only

the coupling effects are taken into account in the model. Thus,

the main feature of the model retained for hair cells and fibers

is supplied by coupling parameters and used by the sample-

by-sample algorithm described in [7]. y
′
i(k) provided by the

algorithm can be regarded as the resulting stimulus after the

passage through the mid-external ear, the basilar membrane

with the effect of hair cells, and afferent fibers. This stimulus

is used to calculate the energy at each output of the cochlear

filters providing 32 features that will be used to compute the

hash value.

Fig. 1. Ear-Based model presentation and the basilar mem-

brane modeled as a triangle divided into 32 cochlear filters.

3.1. Front-End Processing

The energy of the stimulus propagated through the nerve

fibers along each portion Δx of the cochlea is calculated and

lightly smoothed in order to be exploited for extracting perti-

nent information. The absolute energy of each channel, m, is

given by:

E
′
(n, m) = 20 log

L∑
k=1

|y′
n,m(k)|. (5)

In equation (5), n refers to the frame index and L to the

frame size. Between the current and the previous frame, a

smoothing function is applied to smooth the energy fluctua-

tions. The smoothing equation is:

E(n, m) = c0 E(n − 1, m) + c1 E
′
(n, m), (6)

where E(n, m) is the smoothed energy, and c0 and c1 are

coefficients for averaging the terms E(n−1, m) and E
′
(n, m)

such that the sum of the two coefficients is unity.
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The block diagram of our proposed method is given in

Fig. 2. First, an audio signal input is segmented into 3 sec-

onds audio excerpts. The process will be done only on a

unique excerpt. The 3-seconds excerpt is then downsam-

pled to obtain a sampling rate of 16000 Hz. This sampling

frequency has been chosen because the human audition is

more sensitive to the frequencies under 8000 Hz. A framing

division is performed in order to extract the ear-based fea-

tures. In order to avoid signal discontinuities, and to achieve

a basic-time invariance with respect to content similarity (as

perceived by the HAS) an overlap factor of 31/32 is used,

as proposed in [4]. All overlapping frames are weighted by

a Hanning window having the same overlap factor to avoid

borders effect between frames.

Fig. 2. Simplified proposed framework front-end.

3.2. Bit derivation process

The 32 sub-channels outputs are used in the bit derivation

process. As it was experimentally verified in [4], the sign

of energy differences is very robust to many kinds of pro-

cessing. Therefore, our sub-hash extraction scheme is based

on thresholding the energy differences between frequency

cochlear bands. If we denote the energy of band m of frame

n by E(n, m), then m and n will respectively refer to the m-

th bit of the n-th frame of the hash value H(n, m). The bits

of the hash string are extracted using the following formula:

H(n, m) =
{

1 if ΔEn − ΔEn−1 > 0
0 if ΔEn − ΔEn−1 ≤ 0,

(7)

where ΔEn = E(n, m) − E(n, m + 1),
and ΔEn−1 = E(n − 1, m) − E(n − 1, m + 1).

4. RESULTS AND DISCUSSIONS

In order to demonstrate the robustness of our method, a set

of simulation experiments were performed. As mentioned in

section 2, the robustness degree is evaluated through a thresh-

old comparison of the bit error rate. The bit error rate (BER)

is computed by the following formula :

BER =
number of bit errors

number of bits in a hash value
(8)

A threshold of Tl = 0.25 (see Eq. 3) is usually used

[5][3]. In addition, the Hamming distance must be under this

threshold for audio clips that are considered as perceptually

identical. To test the robustness, hash values were extracted

from three 16 bits coded stereo pieces of music and digitized

at a 16000 Hz sampling rate. Each one belongs to a specific

music type: a soft Arabic music track “Lawala Albi” by Fadel

Shaker, the famous 20th century’s metal song “One” by the

rock band Metallica, and “The Barber Of Seville” a classical

piece by Mozart. Then, different severe audio attacks are ap-

plied.In our settings each frame has 256 samples. Hence, a

hash value is representing by a 256x32 bits string. A com-

parison between the original audio clip and the modified one

is made by calculating the corresponding Hamming distance.

The attacks we considered are given below.

• MP3 compression: 128 kbps and 32 kbps compression

rates.

• Amplitude compression: compression ratios are:

8.94:1 for |A|≤ -28.6 dB; 1.73:1 for -46.4 dB <|A|<-

28.6 dB; 1:1.61 for |A|≥ -46.4 dB.

• Amplitude fading: at ±3 dB.

• Band-pass filtering: 100 Hz and 6000 Hz cut-off fre-

quencies using a second order Butterworth filter.

• Dynamic delay: 5 ms right delayed with 70% for orig-

inal signal.

• Echo addition: a decay of 41% and a delay of 98 ms

with an initial volume of 100%.

• Equalization: 10-band equalizer :

Freq.(Hz) 31 62 125 250 500 1k 2k 4k 8k 16k

Gain (dB) -3 3 -3 3 -3 3 -3 3 -3 3

• Denoising: 15 dB noise reduction.

• Noise addition: pending an additive white noise with

various SNR ratios in different positions through the

original excerpt.

• Pitching-stretching: 90%-110% ratio with an overlap

of 33%.

• Silence addition: pending 2-millisecond silence dura-

tion within the signal in many positions.

Table 1 summarizes the obtained Hamming distance af-

ter a comparison between the original excerpt and the corre-

sponding altered version. It is clear that the computed BERs

are under the threshold. Pitching and stretching process yield

to BERs that are close to the fixed threshold. In fact, these

two audio degradations affect the song’s quality, especially

the sound of the singer. This could alter the perception by an

human ear, and consequently our ear-based model. For the

same attacks, the BER value of Mozart’s piece remains under

the threshold. The only audio signal degradation that leads to
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Audio attack Fadel Metallica Mozart
128 kbps MP3 comp. 0.097 0.114 0.072

32 kbps MP3 comp. 0.115 0.126 0.106

Ampli. comp. 0.087 0.105 0.067

-3 dB ampli. fading 0.010 0.012 0.009

+3 dB ampli. fading 0.016 0.011 0.011

Bandpass filtering 0.037 0.049 0.019

Dynamic delay 0.112 0.084 0.067

Distortion 0.032 0.025 0.029

Echo addition 0.063 0.088 0.095

Equalization 0.085 0.091 0.075

Denoising 0.052 0.097 0.068

Noise addition 0.070 0.109 0.544

Pitching 0.209 0.179 0.150

Silence addition 0.466 0.471 0.526

Stretching 0.200 0.212 0.174

Table 1. BERs for several audio signal attacks.

a Hamming distance above the threshold was the silence ad-

dition; this is due to the discontinuity between the processed

frames. Further experiments have been carried out to prove

the high level of robustness of the proposed audio hashing

technique in noisy environments. Fig. 3 shows that the pro-

posed scheme is robust in such environment. We have ob-

served that classical music piece is more sensitive (than hard

rock music) to the noise attack. This is due to the fact that the

Mozart’s track contains several low-magnitude regions that

are affected by the noise more than the other parts of this

signal. To measure the power of discrimination of our au-

dio hashing method, comparative experiments based on Ham-

ming distance are performed. These comparisons are made

between two (perceptually) different audio clips. As given

by Eq. 4, the Hamming distance for such excerpts should be

above the threshold Th. This threshold is fixed at 0.35. Table

2 shows that our proposed framework verifies this condition

perfectly.

Fadel Metallica Mozart
Fadel 0 0.464 0.455

Metallica 0.464 0 0.474

Mozart 0.455 0.474 0

Table 2. BER between different original audio clips.

5. CONCLUSION

A new audio hashing scheme, based on the human percep-

tion system, was presented. Experiments using various audio

excerpts show that the proposed system is very resilient to

a large variety of severe audio attacks. The discrimination

power of the proposed audio hashing is also experimentally

Fig. 3. Robusteness of the proposed audio hashing system in

noisy environments: variations of Hamming distance with the

respect of the SNR.

proven. This feature is very useful since it directly affects

the efficiency of the method during a query search (by ex-

cerpt) for example. We are currently continuing the effort to

incorporate this framework in Peer-to-Peer applications for

content-based music retrieval. Besides this, tests that aims

at showing if user opinions about perceptual similarity meet

hash values will be carried out.
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