
DATA HIDING IN HARD-COPY TEXT DOCUMENTS ROBUST TO
PRINT, SCAN AND PHOTOCOPY OPERATIONS

Avinash L. Varna
University of Maryland,
College Park, USA.

Shantanu Rane, and Anthony Vetro
Mitsubishi Electric Research Laboratories,

Cambridge, USA.

ABSTRACT

This paper describes a method for hiding data inside printed
text documents that is resilient to print/scan and photocopying
operations. Using the principle of channel coding with side
information, the embedder inserts a message into a text docu-
ment while treating the content of the document as known in-
terference. The data is embedded by making small changes to
text characters before the document is printed. Using a simple
correlation-based detector in conjunction with an error correc-
tion code, the hidden data can be extracted from a photocopy of
the printed document. By enhancing the detector with an opti-
cal character recognition algorithm, the embedded data can be
extracted even after multiple rounds of photocopying. Results
from subjective tests show that the changes made by the em-
bedding algorithm, while perceptible, are not obtrusive to a lay
reader.

Index Terms— Watermarking, data hiding, printed text
documents, channel coding with encoder side information.

1. INTRODUCTION

A very common mode of leakage of sensitive information is via
unauthorized distribution of hard-copy documents. To trace the
source of such leakage, it is often necessary to embed tracking
information inside a printed document. During an investiga-
tion, forensic experts can scan the document and retrieve the
embedded information which can convey relevant details such
as the identification number of the printer, the date and time at
which it was printed, or the IP address of the machine which
issued the print command. Further, this information can be a
cryptographic hash calculated from the text, which can later be
used to authenticate the document and to detect and localize
tampering.

Embedding data in printed text documents poses signifi-
cant challenges. Unlike natural images, text data is extremely
structured and hence there is little room to make changes in the
text without the changes becoming visible to a human observer.
Besides, minute changes made to embed data may be lost when
the document is photocopied. Printed documents also undergo
wear and tear during normal use that affects the accuracy of
extracting the hidden information. The printed document must
be converted into a suitable digital format before detection can
be performed. The digitization process, e.g., scanning, invari-

This work was performed while A. Varna was an intern at Mit-
subishi Electric Research Laboratories.

ably introduces additional distortion, and the data embedding
algorithm must be designed to be robust to such degradations.

There exist a number of schemes which visibly embed in-
formation into the background of a printed document, for ex-
ample [1, 2]. These embedding schemes work independently
of the printed content; indeed, the printed content obscures the
data embedded into the background, making it harder to detect.
Further, these techniques can be obtrusive and interfere with the
readability of the printed content.

Methods to unobtrusively embed data by modulating the
distance between successive lines of text [3] or words [4] have
been proposed, but these techniques have low embedding rates.
Data can also be embedded into individual characters by modu-
lating their grayscale values or halftone patterns [5]. These sub-
tle changes are invisible to the human eye but can be detected by
scanning a printed document. However, such schemes are not
robust to photocopying operations. An alternative technique to
embed data by inserting dots in pseudorandom locations in the
background was proposed in [6]. This scheme is robust to one
round of photocopying. However, the small dots do not survive
multiple rounds of photocopying.

In this paper, we propose a technique to embed data into
printed text documents by slightly altering the shapes of certain
characters. It is shown that the hidden data can be success-
fully extracted even after multiple rounds of photocopying. We
present results from subjective tests to demonstrate that the em-
bedding algorithm does not cause significant perceptual degra-
dation in the documents.

2. EMBEDDING DATA IN PRINT DOCUMENTS

We adopt the framework of channel coding with side informa-
tion for embedding information [7] in which the document to
be watermarked is treated as known interference at the embed-
der. Operations such as printing, scanning and photocopying,
as well as any intentional modifications made by an attacker
are modelled by a noisy channel. The aim of our scheme is to
make the watermark resilient to this noisy channel, i.e., the wa-
termark extraction module should be able to extract a reliable
estimate of the original watermark even after these modifica-
tions. The embedding and extraction modules are described in
the subsequent sections.

2.1. Symbol embedding and extraction

Given the text document, we first locate all characters with ver-
tical strokes of length at least l pixels and width at least w pix-

1397978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

(a) (b) (c) (d)

Fig. 1. Characters with different embedded symbols at 300%
magnification. The distance between the notches or bumps en-
codes a symbol.

PCK NUM BYTE 1 BYTE 2 . . . BYTE N

Begin Packet Symbol Synchronization Symbol

Fig. 2. The embedded data is assembled into packets in order
to facilitate synchronization and error correction at the detector.

els. A symbol is embedded into the left edge of the stroke by
adding or removing two groups of pixels which are equidis-
tant from the center. The distance between the groups of pix-
els encodes the different symbols. The size and shape of the
group of pixels added or removed can be chosen to trade off ro-
bustness for imperceptibility. Modifying more pixels increases
the robustness of the symbols to copying and other attacks, but
makes them more perceptible. Fig. 1 shows examples of some
characters with different embedded symbols.

To extract the embedded data from a scanned grayscale
document image Y , we determine the locations of characters
with vertical strokes of length at least l′ and width at least w′

pixels. The values of l′ andw
′ are chosen based on the values of

l, w, the printing resolution and the scanning resolution. Once
the locations of the vertical strokes have been determined, the
embedded symbol is identified by correlating the corresponding
stroke from the grayscale image Y with each of the candidate
symbols and choosing the symbol with the highest correlation,
if the correlation is larger than a threshold.

From our experiments, we observed that some symbols
are significantly degraded during photocopying. Such symbols
may not be detected at all, which results in a loss of synchro-
nization at the detector. To minimize the data loss due to such
errors in the detection process, a packet-based synchronization
scheme is used as described in the next subsection.

2.2. Message packetization and ECC

Prior to embedding, the data is grouped into different packets
consisting of a header, the data, and synchronization symbols as
shown in Fig. 2. The header consists of a Begin Packet symbol,
followed by the packet number in binary (PCK NUM).N bytes
of the message are interleaved with synchronization symbols
and appended to the header to form the packet. A large value
of N implies a smaller number of packets per page and hence
a lower packetization overhead. However, if a single packet
is lost due to desynchronization, then N bytes are lost at once.
Thus, the value ofN determines the robustness versus overhead
tradeoff of the embedding scheme.

To extract the embedded data, the detector looks for the
Begin Packet symbol and extracts the packet number. If the
packet number cannot be correctly extracted, or if the number
of synchronization symbols present in the packet is not N , the

Electronic Document

Message

to Embed

Error
Correction

Coding

Packetization

Select
Locations to
Embed Bits

Optional Key

Insert

Message
Print

Hardcopy

Document

(a) Data Embedding

Error
Correction
Decoding

Scan
Document

Degraded
Hardcopy
Document

Detection of
Embedded

Symbols

Optional
Helper

Database

De-
packetization

Estimate of
Message

Optional Key

(b) Extraction of hidden data

Fig. 3. Insertion and extraction of hidden data using the princi-
ple of channel coding with encoder side information.

entire packet is treated as an erasure. If a particular byte of a
packet cannot be extracted correctly, it is also treated as an era-
sure. Additionally, some of the data symbols may be detected
in error. An error correcting code (ECC), with an appropriately
chosen coding rate is used to correct these errors and erasures.

The overall data embedding and extraction procedure is
shown in Fig. 3. An error correction code is applied to the
message (e.g. a watermark) and the result is assembled into
packets. The packets are embedded into the text as described
in Section 2.1. The locations at which the data is embedded are
selected by a secret key common to the embedder and detector.
For data extraction, the document is first scanned and the em-
bedded symbols are identified. The synchronization symbols
and packet structure are used to extract the payload. ECC de-
coding is then performed to correct any errors that may have
occurred in the detection process.

3. EXPERIMENTAL EVALUATION

We test the robustness of our data embedding scheme using a
20-page document. The same document is formatted using dif-
ferent font sizes and typefaces for testing. We used a HP Laser-
jet 5200 for printing the documents at the default resolution of
600 dots per inch (dpi). A Ricoh Aficio 2510 copier was used
for photocopying and an Epson scanner was used to scan doc-
uments. The scanning resolution was chosen to be equal to the
printing resolution of 600 dpi.

To embed a symbol, we either add or remove two groups
of pixels in the shape of a 4 × 4 square along the edge of ver-
tical strokes of length at least l = 29 pixels and width at least
w = 6 pixels. These values were chosen experimentally to
provide a good tradeoff between robustness and imperceptibil-
ity. Fig. 1(a) and (b) show the symbols used to embed bits 0
and 1 respectively. Fig 1(c) shows the synchronization sym-
bol and Fig. 1(d) shows the Begin Packet symbol used in our
experiments. 20 bytes of plaintext data are embedded in ap-
proximately one half of a page full of text. A Reed-Solomon
code over GF (256) with rate 1/4 is then applied, so that there
are now 80 bytes to be embedded. These are assembled into
20 packets, each containing N = 4 bytes each. The width of

1398

(a) Original text with no data (b) Text with embedded data (c) Printed text

(d) One round of copying (e) Two rounds of copying (f) True size text with embedded data

Fig. 4. (a) 12 point TNR font with no embedded data at 150% magnification. (b)-(e)Text with embedded data at 150% magnifica-
tion, after degradation by various print, scan and photocopy operations. (f) Text with embedded data at true size.

the packet number field (PCK NUM) is set to 5 bits, so that
a maximum of 32 packets can be indexed. Additionally, there
are 5 synchronization symbols, so that the number of symbols
embedded in half a page is 20 × (4 × 8 + 5 + 5) = 840.

Fig. 4(a)-(e) show a magnified portion of the text to high-
light the details preserved after various operations. Fig. 4(a)
shows the original unmarked text, Fig. 4(b) shows the text with
embedded data, and Fig. 4(c)-(e) show the scanned document
after printing, one round of photocopying and two rounds of
photocopying, respectively. Fig. 4(f) shows a portion of a text
document with embedded data at normal resolution. We ob-
serve that at normal reading distances, the modifications made
are nearly imperceptible. Further, as the number of copying op-
erations increases, the visual quality of the document becomes
worse, and the embedded symbols undergo significant distor-
tion.

3.1. Detection results

A simple correlation-based detector is used to identify the em-
bedded symbols as described in Sec. 2.1. After the symbols are
extracted, the synchronization symbols are used to extract the
individual bytes. Note that if one synchronization symbol or
Begin Packet symbol is lost, then the entire packet is discarded,
resulting in 4 erasures. When all the extracted symbols have
been processed, a Reed-Solomon decoder is applied to correct
the errors and erasures and extract the embedded message.

Fig 5 shows the average number of erasures (e) plus twice
the number of errors (t) in extracting the embedded data after
printing and photocopying operations. For the given choice of
ECC parameters, the embedded data can be recovered as long
as e+2t ≤ 60. Thus, we can successfully extract the embedded
data from the printed document and the first copy in most cases.
However, the number of errors and erasures in the second copy
is too large to be corrected by the error-correcting decoder and
the data cannot be extracted. To address this problem, we use
an optical character recognition (OCR) aided detector that can
be used to extract data even from the second copy.

3.2. Optical Character Recognition (OCR) aided detector

To improve the accuracy of the detector, an OCR engine is used
to first identify the characters, and then use this information
to extract the hidden data accurately. It is assumed that the

Print Copy 1 Copy 2Copy 2 OCR
0

20

40

60

80

A
ve

ra
ge

 v
al

ue
 o

f
e+

2t

(a) TNR 12pt
Print Copy 1 Copy 2Copy 2 OCR

0

20

40

60

80

A
ve

ra
ge

 v
al

ue
 o

f
e+

2t

(b) TNR 10pt

Print Copy 1 Copy 2Copy 2 OCR
0

20

40

60

80

A
ve

ra
ge

 v
al

ue
 o

f
e+

2t

(c) Arial 12pt
Print Copy 1 Copy 2Copy 2 OCR

0

20

40

60

80

A
ve

ra
ge

 v
al

ue
 o

f
e+

2t

(d) Arial 10pt

Fig. 5. Detection results for different fonts. The vertical bars
represent the average value of e + 2t for different operations.
The dashed horizontal line represents the error correction capa-
bility of the Reed-Solomon code, i.e., e + 2t ≤ 60.

font typeface and size can be identified using font recognition
systems such as [8]. We use the Tesseract OCR engine [9] to
segment and identify the characters. Any errors in character
recognition are manually corrected.

The detector contains a database of commonly occurring
font typefaces and sizes. Given the document with the embed-
ded data, and the output of the OCR engine, the detector com-
pares each character with the corresponding unmodified char-
acter from its database to determine the likely location of the
hidden data. It then crops a small neighborhood of this location
from the scanned image and correlates it with all the symbols
to identify the most likely one. With this side information, the
average number of errors and erasures in the second copy re-
duce by about 50 − 60% to the values shown in Fig 5. Thus,
OCR-aided detection enables extraction of the message from
even the second photocopy.

1399

A B C D0

10

20

30

Option

C
ou

nt
s

(a) TNR 12pt

A B C D0

10

20

30

Option

C
ou

nt
s

(b) TNR 10pt

A B C D0

10

20

30

Option

C
ou

nt
s

(c) Arial 12pt

A B C D0

10

20

30

Option

C
ou

nt
s

(d) Arial 10pt

Fig. 6. Histograms of qualitative scores.

3.3. Subjective evaluation of document quality

We also conducted subjective tests to determine the quality of
the documents with embedded data. Four pages containing the
same text formatted using two fonts (Arial and Times New Ro-
man (TNR)), in two different sizes (10 pt and 12 pt) were used
for embedding random data. To evaluate the worst case quality
of the watermarked documents, data was embedded into every
possible vertical stroke of length at least 29 pixels and width
6 pixels, representing the highest possible embedding rate and
worst possible degradation due to embedding. For each page
containing embedded data, another page was created with the
same font and same size, but without embedded data. Thus
there were 8 pages in all, 4 of which contained embedded data,
while the other 4 did not. These 8 pages were then printed on a
HP Laserjet 5200 printer at a resolution of 600 dpi.

Participants were asked to compare two pages in the same
font and the same size with and without embedded data and
choose one of the following options for each pair:
A. I don’t see any difference between the two.
B. Barely perceptible differences.
C. Perceptible but not obtrusive / irritating.
D. Very obtrusive and irritating.
Fig. 6 shows histograms of the rating received for each pair

of watermarked and unwatermarked documents. We observe
that a larger number of people found the modifications obtru-
sive in TNR 12pt font and Arial 10pt font when compared to
the other two. Overall, more than 75% of the users rated A,
B, or C when asked to compare the same text with and without
embedded data.

We again reiterate that the scores obtained above are in-
dicative of a worst case scenario where every possible vertical
stroke was used for embedding. In practice, only a fraction of
these strokes would be chosen for embedding based on a key,
as shown in Fig. 3(a). To further improve the perceptual qual-
ity, some of the symbols may be embedded on the right edge
of these strokes and at different vertical positions, so that the
distortion introduced is more random.

4. SUMMARY AND OUTLOOK

A method to embed data into hard-copy documents by making
small changes to certain text characters was described. Using
a simple correlation-based detector in conjunction with an er-
ror correcting code, the embedded data can be extracted from
a photocopy of the original printed document. Using an OCR-
aided detector, the detection accuracy can be further improved,
and the hidden data can be extracted even from a photocopy
of the photocopy. Subjective tests show that at the worst per-
ceptual quality corresponding to the highest embedding rate, a
majority of the participants found the changes made to the doc-
uments perceptible, but not obtrusive. In the future, we plan to
make the embedding scheme robust to arbitrary cropping (tear-
ing) attacks and to extend it to stroke-based fonts.

5. REFERENCES

[1] T. Sugai, U. Shimmyo, H. Ito, and M. Suzuki, “Develop-
ment of a watermarking method for printed documents,” in
70th Convention of the Information Processing Society of
Japan, Tsukuba, Japan, Mar. 2008, (in Japanese).

[2] T. Anan, K. Kuraki, and S. Nakagata, “Watermarking tech-
nologies for security-enhanced printed documents,” Fu-
jitsu Scientific and Technical Journal, vol. 4, no. 2, pp.
197–203, Apr. 2007.

[3] J. T. Brassil, S. Low, and N. F. Maxemchuk, “Copy-
right protection for the electronic distribution of text doc-
uments,” Proc. of the IEEE, , no. 7, pp. 1181–1196, Jul.
1999.

[4] D. Huang and H. Yan, “Interword distance changes repre-
sented by sine waves for watermarking text images,” IEEE
Trans. on Circuits and Systems for Video Technology, vol.
11, no. 12, pp. 1237–1245, Dec. 2001.

[5] R. Villán, S. Voloshynovskiy, O. Koval, J.E. Vila-Forcén,
E. Topak, F. Deguillaume, Y. Rytsar, and T. Pun, “Text
data-hiding for digital and printed documents: Theoretical
and practical considerations,” in Proc. of SPIE-IS&T Elec-
tronic Imaging 2006, Security, Steganography, and Water-
marking of Multimedia Contents VIII, San Jose, USA, Jan-
uary 15–19 2006.

[6] H. Y. Kim and J. Mayer, “Data hiding for binary docu-
ments robust to print-scan, photocopy and geometric dis-
tortions,” in Proc. of the XX Brazilian Symposium on Com-
puter Graphics and Image Processing, Washington, DC,
USA, 2007, pp. 105–112.

[7] I. Cox, M. Miller, and A. McKellips, “Watermarking as
communications with side information,” Proc. of the IEEE,
vol. 87, no. 7, pp. 1127–1141, Jul. 1999.

[8] A. Zramdini and R. Ingold, “Optical Font Recognition us-
ing Typographical Features,” IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, vol. 20, no. 8, pp. 877–882,
Aug. 1998.

[9] “Tesseract OCR engine,” Available online at
http://code.google.com/p/tesseract-ocr/.

1400

