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ABSTRACT

A signal processing approach for modeling vehicle trajectory during
lane changing driving is discussed. Because individual driving habits
are not a deterministic process, we developed a stochastic method.
The proposed model consists of two parts: a dynamic system rep-
resented by a hidden Markov model and a cognitive distance space
derived from the range distance distribution. The first part models
the local dynamics of vehicular movements and generates a set of
probable trajectories. The second part selects an optimal trajectory
by stochastically evaluating the distances from surrounding vehicles.
From experimental evaluation, we show that the model can predict
the vehicle trajectory at given traffic conditions with 17.6 m predic-
tion error for two different drivers.

Index Terms— Driving Behavior, Dynamic System, hidden
Markov model, Sampling

1. INTRODUCTION

Driving safety and efficiency in vehicle driving are central issues
in modern societies. Even though the fatality rate has apparently
peaked in Japan, traffic accidents were still responsible for approxi-
mately 6,000 fatalities in 2007 [1]. Recent energy problems are also
a serious threat to modern society. Such technologies as pre-crash
safety and hybrid energy have contributed to solving these problems
[2]-[4]. On the other hand, such technologies concerning drivers as
driver monitoring and in-vehicle interfaces are still not commonly
utilized. Studies that model human driving behavior are insufficient,
although vehicular behavior has been widely studied from the view-
point of control theory. Since human behaviors are not deterministic,
research that models driving behavior from the stochastic signal pro-
cessing viewpoint is important. In this paper, we propose a stochas-
tic method of predicting vehicle trajectories during lane changing
(LC). In our proposed method, a trajectory model can be fully trained
by a set of collected data based on the maximum likelihood princi-
ple without predetermined parameters. In addition, using a hidden
Markov model (HMM), our proposed method can model the multi-
state behavior of lane changing without explicit knowledge about the
state transitions or predetermined parameters.

Various approaches have predicted vehicular behaviors. Daniels-
son et al. [5] generated vehicle trajectories of a surrounding vehicle
for a few seconds. However, driver characteristics were not consid-
ered and the method was not evaluated quantitatively using an actual
signal. Althoff et al. [6] stochastically modeled the presence of
trucks, cars, and pedestrians in traffic for a few seconds. However,
driver characteristics were not considered, either.

The most important contribution of this study to the above pre-
vious studies is developing a model that can predict vehicle behavior
of about a 20-second period based on stochastic signal processing.
Such long-term prediction is not discussed in the previous works
based on a control theory assuming that sensing data are updated
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every short period. Also since the models used in the approach are
fully trainable, driver-dependent trajectory prediction can be easily
implemented.

The proposed method consists of two parts. The first uses a
hidden Markov model to characterize the stochastic dynamic prop-
erties of the vehicular movements that originate from the driver’s
habitual characteristics. Since lane change activity consists of multi-
ple states, i.e., examining the safety of traffic environments, moving
into the next lane and adjusting to its traffic flow, a single dynamic
system cannot model the trajectory. In addition, the boundaries be-
tween states cannot be observed from the trajectory. HMM models
such a stochastic state transition system, and the EM algorithm can
train an HMM without explicit information of the state boundaries
[7]. Furthermore, once the joint probability of a signal and its time
derivative, i.e., z[n] and Az[n], is trained, the most probable sig-
nal sequence, {z[n]}n—1,...,n can be calculated for the given state
transition pattern [8]. Therefore, this part can be used for generating
trajectory hypotheses or bottom-up processing.

The second part is a cognitive hazard map calculated from the
car following distance distributions of the training data. Here, the
driver’s sensitivity of the range distance to a near-by vehicle in a
particular location is modeled. Such sensitivities to surrounding ve-
hicles are then integrated into a hazard map in a probability domain.
Therefore, this function can be used for the trajectory selection. Fi-
nally, the two process are combined into a trajectory predicting al-
gorithm that first generates a set of probable trajectories by sampling
the HMM and then selects the optimal trajectory based on the cog-
nitive hazard map of the surrounding traffic.

In the rest of this paper, we discuss and evaluate our proposed
method as follows. In Sections 2 and 3, a HMM-based generation
model and a cognitive hazard map are discussed, respectively. The
experimental evaluation of the method is given in Section 4, and
Section 5 summarizes the results and future works.

2. MODELING TRAJECTORIES BY HMM

2.1. Trajectory data

A set of vehicle movement observations was measured using a driv-
ing simulator. Relative longitudinal and lateral distances from the
vehicle’s position when starting the lane change, x;[n], y;[n], and
the velocity of the vehicles, @;[n], y:[n], were recorded every 160
ms. Here ¢ = 1,2, 3 is an index for the location of surrounding ve-
hicles (Figure 1), and (zo[n], yo[n]) represents the position of the
target (ego) vehicle.

The time period of lane changing activity, n = 1,--- | N, starts
when VO (ego vehicle) and V2 are at the same longitudinal location
and ends when the VO’s lateral location reaches the local minimum
as shown in Figure 1.
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Fig. 1. Lane change trajectory and geometric positions of surround-
ing vehicles. VO is the vehicle changing lanes.

2.2. Hidden Markov Model

We used a three-state HMM to describe the three different stages
during a lane change: preparation, shifting, and adjusting. In the
proposed model, each state is characterized by a joint distribution of
eight variables:

v = [Zo, 71, %2, Yo, AZo, Ayo, Ao, A%yo]". M

Note that hereafter we omit time index [n] from the variables. In gen-
eral, longitudinal distance, ¢, monotonically increases in time and
cannot be modeled by an i.i.d. process. Therefore, we use longitudi-
nal speed xo, as a base (static) variable to characterize the trajectory.
We calculated higher order time derivatives by delta operation given
by

Z k- c[n — k|

k=—K

Acfn) = =5 6)

k=—K

because it is robust to noise contamination.

Finally, after training the HMM by a set of recorded trajectories,
mean vector y; and covariance matrix 3; of the trajectory variable v
are estimated for each state j = 1,2, 3. Meanwhile the distribution
of time length NV is modeled by a Gaussian distribution.

2.3. Trajectory Generation from a hidden Markov model

As shown in the later experiments, the trajectory’s shape is governed
by the HMM and the duration of the LC activity. When the driver
performs LC in a shorter time, the sharper trajectory is used. We
generate a set of probable LC trajectories by determining state dura-
tions {d; } by sampling the corresponding pdfs as follows.

First determine LC time N by sampling its trained distribution.
Then determine state durations d; by also uniformly sampling the
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state duration distribution by

&N
dj == - 3)
{ZkK—l £k-‘

Where ¢; is a random variable that follows a uniform distribution
between 0 and 1. Once a set of state durations is determined, the
maximum likelihood HMM signal synthesis algorithm[8] generates
the most probable trajectory. Simply repeating this process will pro-
duce a set of probable vehicle trajectories characterized for a trained
driver.

3. TRAJECTORY SELECTION

Although various natural driving trajectories may exist, due to the
surrounding vehicle conditions, the number of LC trajectories that
can be realized under the given traffic circumstances is limited. Fur-
thermore, the selection criteria of the trajectory based on the traffic
context differ among drivers, e.g., more sensitive to the front vehicle
than the side vehicle etc. Therefore, we model the selection crite-
rion of each driver by a scoring function for LC trajectories based
on vehicular contexts, i.e., relative distances from the surrounding
vehicles.

In the proposed method, a hazard map M (z;, y;) is built in a
stochastic domain based on the histograms of the relative positions
to surrounding vehicles r; = [z; — o, y; — yo]’. Again, note that
we omit time index [n].

To model the sensitivity, we calculated covariance matrix R; of
each of three distances, r;, 7 = 1, 2, 3, from the training data. Since
the distance varies more widely in less sensitive distance, we use the
quadrature form of inverse covariance matrices R; ' as a metric of
the cognitive distance. Then calculate hazard map M (zo, yo, i, yi)
for surrounding vehicle Vi by

1
1+exp{ai (r!R;'ri — Bi) }
Where «; is a parameter for the minimum safe distance defined so
that the minimum value of cognitive distance r'R.~'r of the training

data corresponds to the lower 5 % distribution values. /3; is the mean
value of 'R 'r.

M (I‘l) = (4)

log(0.05) — log(0.95)

min{rfR;lri} — rfR;lri

)

=

Bi = riR;'r; (6)

Harzard map M can be regarded as an a posteriori probability of
being in the safe driving condition under range distances Pr{safe|r},
when the likelihood is given as a exponential quadrature form, i.e.,

Pr {r|safe/unsafe} o exp {— %rtAr} . 7

Therefore, integrating the harzard maps for three surrounding ve-
hicles can be simply done by interpolating three probabilities with
weights A; into an integrated map,

r_ )\1
M = ZZ: 1+ exp {ai (rfR;lri — ,31)}

Once the geometrical positions of the surrounding vehicles at time
point m, r;[n] are given, M’ can be calculated for each time point,
and averaging the value over the LC time can compare the possible
trajectories. Then the optimal trajectory which has the lowest value
is selected among the possible trajectories.
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Fig. 2. LLC time and its most probable state distribution calculated
by the trained HMM.

4. EVALUATION

4.1. Data collection and set up

Thirty LLC drivings were recorded for two drivers using a driving
simulator under simulated urban highway conditions where the traf-
fic was moderatory dense. The drivers were instructed to pass the
preceding car when possible. Figure 2 shows the distribution of the
LC time and its most probable state distribution. The state distribu-
tion characterizes the driving behavior in LC activity. For example,
on average, driver B required more time than A to complete a LC.
Thirty trials were used for 3-fold cross validation tests: twenty for
training and ten for tests. Each state of an HMM is characterized
by a joint Gaussian pdf of trajectory variables and trained using a
HTK[9] HMM toolkit.

Four hundred possible trajectories were generated from an
HMM. First, by sampling the distribution of the LC duration twenty
times and then for each LC duration IV, twenty sets of state durations
{d;} were hypothesized by also sampling the uniform distribution
by (3). For selecting the optimal trajectory, we integrated three
hazard maps into a single hazard map with equal weights, i.e.,
A1,2,3 = 0.33, which is represented by equation (8). We have
assumed that surrounding vehicle speed #; and g; are constant
throughout the LC activity.

4.2. Results

The trained joint pdfs of the trajectory variables were plotted for each
HMM state of the two drivers in Figure 3. We confirmed that the ha-
bitual difference in LC driving behavior can be modeled in HMM
parameters. The trained hazard maps M’ for the two drivers shown
in 4 also depict the differences in sensitivities to the surrounding
vehicles. The possible generated trajectories, the selected optimal
trajectory, and the actual trajectory recorded for the condition are
shown in figure 5. Although this model tries to predict the vehicular
trajectory over a 20-second period, the proposed method can gener-
ate a reasonable prediction for each driver. The trajectories of the
two drivers are clearly different.

For further quantitative evaluation, we calculated the difference
of the predicted and actual trajectories based on dynamic time warp-
ing (DTW) using the normalized square difference as a local dis-

_

E ........... 15t state

= or *Ll__n ) (preparing) ]
c

2 \ 29 state i
D (shifting)

(72} ...

o -2 - |
e d

= _3f 3" state
e jamseTTTIIToaag (adjusting)
3 —4r '~.._____<__:__ e : ]
© =

-l _ I | | | |

Longitudinal velocity [m/s]

Fig. 3. Joint pdfs of trajectory variables trained for each state of
two drivers(solid:driver A, dotted:driver B). (only plotted for & and
y.) The square shows the mean and the contour represents the ‘one
sigma’ boundary.
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Fig. 4. Trained hazard maps of two drivers when the same geometric
positions of surrounding vehicles are given.

tance:
DGi,j) = min{ D(i—1j—1) ©)
Dij - 1)
1 (aofi]l = 2oli))” . (yoli] — doli))”
" I+J—1< S wdlnl % g2 )

where I and J are the length of the actual and predicted trajectories,
and the DTW recursion proceeds from D(0, 0) = 0 to D(I,J). We
used 10log(D) as a signal-to-deviation (SDR) index for the predic-
tion. This is because the length of the actual and predicted trajecto-
ries are different.

The average SDR value for 60 tests was -26.1 dB. We also tested
our method for the correct I.C time, i.e., I = .J. When the correct .C
time is given, the root mean square error (RMSE) between the pre-
dicted and actual trajectories can be calculated. The average RMSE
for 60 tests was 17.6m.

The effectiveness of the proposed method in predicting a long
period of trajectory is confirmed.
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Fig. 5. Examples of the generated (dotted lines) and the selected (a
broken line) trajectories. The actual trajectory observed under the
given condition is also plotted by a solid line.

Figure 6 shows the resultant SDRs when driver A’s model is used
for predicting driver B’s trajectory and vice versa. SDR increased by
more than 8.4 % when the different driver’s model was used for the
prediction. From the results, the effectiveness of the proposed model
for capturing LC activity characteristics is also confirmed.

5. SUMMARY AND FUTURE WORKS

In this paper, we proposed a stochastic framework for modeling driv-
ing behavior where driver habitual and cognitive characteristics are
modeled by an HMM and geometrical probability function. By gen-
erating a set of probable trajectories using HMM and then selecting
the optimal trajectory by the geometric function, in the proposed
method, the trajectory of a lane change about 20 seconds long can
be predicted only from the intial conditions. Since model parame-
ters can be trained from the statistically motivated training criteria,
the personality in driving can be easily characterized from training
data.

From the preliminary experimental evaluations, we confirmed
that the model can generate a reasonably accurate personalized tra-
jectory. However, various future works are needed. First, more an-
alytical and quantitative evaluation of the method is indispensable
that uses larger amount of data. Also, the model should be tested
using realistic driving data collected under actual traffic conditions.
Integrating the generation and selection parts in a consistent criterion
is also very challenging but important future work.
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