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ABSTRACT

In this paper, we propose a new framework to discriminate the initial
maneuver of lane-crossing event from driver-correction event, which
is the primary reason for false warnings of the Lane Departure Pre-
diction Systems. The proposed algorithm validates the beginning
episode of the trajectory of driving signals whether it will cause a
Lane Crossing Event or not, by employing driver behavior models
of Directional Sequence of Piecewise Lateral Slopes (DSPLS) rep-
resenting lane-crossing and driver-correction events. The framework
utilizes only common driving signals, and allows adaptation scheme
of driver behavior models to better represent individual driving char-
acteristics. The experimental evaluation shows that the proposed
DSPLS has detection error as low as 17% Equal Error Rate. Fur-
thermore, the proposed algorithm reduces the False Alarm rate of
the original Lane Departure Prediction System from 38.8% to 6.1%
with less trade-off for the prediction accuracy.

Index Terms— Lane Departure Prediction, Driver Correction,
Lateral Slopes, Driver Behavior Model, Driver Model Adaptation

1. INTRODUCTION

Traffic accident is one of the major concerns around the world. Ac-
cording to the World Health Organization (WHO), more than one
million people are killed on the roads each year. There are a num-
ber of contributing factors and causes of traffic accidents ranging
from driver behavior to mechanical failure and road design. One of
the accident causes is unintentional lane departure from a driving
lane to the others. In Japan, 38.9% of single-vehicle crashes involve
unintentional lane departure [1]. In USA, road departure problem
accounts for 41% of all vehicle fatalities. Similarly, 36% of car acci-
dents in European highways are caused by unintentional lane depar-
ture. Several researchers have proposed a variety of ideas and tech-
nologies to predict and/or detect unintentional lane departure events
to warn a driver about such events or automatically adjust the vehicle
systems in order to prevent or mitigate the consequent traffic acci-
dents. Some technical solutions have been proposed, such as Lane
Departure Warning System (LDWS), which is a system developed to
warn a driver when a vehicle begins to deviate from its driving lane
(unless a turn signal on that direction is activated), and Lane Keep-
ing Assistance System, which assists driver’s steering maneuver to
keep a vehicle within its driving lane, etc.

In this paper, we study Lane Departure Prediction System
(LDPS) which is a system developed to warn a driver before the ve-
hicle starts to depart for its driving lane [2, 3]. Time to Line Crossing
(TLC), which is defined as the time duration available for a driver
before any parts of vehicle cross the lane boundary, is a simple and
yet powerful indicator for predicting a forthcoming unintentional

Lane Crossing Event (LCE). Nevertheless, one drawback of TLC-
based indicator is excessive false alarm; the earlier warning time of
LCE, the higher false-alarm rate. One of the causes of false-alarm
events is due to the subsequent driver-correction maneuver of lateral
position. Such intentional driver-correction event may begin slightly
before or after the prediction time and has its effect afterward. At
the prediction time, although the TLC-based condition is satisfied
for warning, the vehicle merely goes close to the lane marking and
return, but will never cross the lane boundary. Excessive false alarm
is one crucial issue for developing the LDPS products, because it is
annoyance to a driver and will discourage the driver from using it.

In order to allow LDPS to offer longer available time for a
driver to respond to an alarm signal in order to avoid uninten-
tional LCE without increasing annoyance level of excessive false
alarm, we proposed a technique to prevent false warnings by vali-
dating the warning candidates obtained from TLC-based indicator
whether the upcoming event actually is unintentional LCE or de-
liberate Driver-Correction Event (DCE). The key idea is to employ
driver behavior model of ‘Directional Sequence of Piecewise Lateral
Slopes’ (DSPLS), which encodes directional movement of vehicle’s
lateral position with its corresponding driving signals within each
small episode. The proposed technique utilizes trajectory of driv-
ing signals at a prediction time as an initial episode of subsequent
sequences of lateral trajectory. Consequently, the likelihood ratio
of subsequent LCE and DCE generated by such initial trajectory
are compared against a pre-defined threshold for a decision making.
The proposed technique involves two sets of DSPLS driver behav-
ior models: 1) driver-independent models and 2) driver-dependent
models. Driver-independent models are obtained off-line from the
driving signals of development data. Driver-dependent models are
adapted on-line from driver-independent models using individual
driving signals. Finally, driver-dependent models are used to vali-
date the LCE warning candidates. In this study, Gaussian Mixture
Model (GMM) framework is used as our core driver behavior model,
as well as Maximum-A-Posteriori (MAP) adaptation technique for
driver model adaptation.

This paper is organized as follows. The TLC-based LDPS is re-
viewed in Section2. Section 3 discusses the proposed DSPLS frame-
work, followed by driver behavior model training and adaptation in
Section 4. An experimental evaluation of DSPLS framework is de-
scribed in Section 5. Finally, Section 6 concludes this paper.

2. LANE DEPARTURE PREDICTION SYSTEM (LDPS)

One common indicator used to predict vehicle position before Lane
Crossing Event (LCE) occurs is Time to Line Crossing (TLC).
Several research studies have shown high correlation between TLC
value and driver performance [4, 5]. TLC can be calculated from
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various assumptions of vehicle dynamic, geometric formula, and
available information. Nevertheless, there is no clear experimental
validation demonstrates whether which assumption or model is the
best TLC representation. In our study, we employ the standard
model (i.e., straight road and straight vehicle trajectory) as our ref-
erence due to its smooth and good characteristics. One estimation
of TLC is the ratio of lateral distance to lateral velocity, or the ratio
of the Distance to Line Crossing (DLC) along vehicle path to the
vehicle forward velocity [3] as: tlc = yl/(v sin φ), where yl is a
lateral distance from lane boundary to vehicle’s reference (meters),
v is vehicle speed (meters per second), and φ is vehicle relative yaw
angle (radians).

In general, TLC value decreases as the vehicle moves closer to
the lane boundary and equal to zero at LCE. Therefore, a threshold
can be set based on a desired available warning time, and an alarm
signal is activated when a TLC value starts to be smaller than the
threshold. Fig. 1-(a) shows a plot of lateral position (top) and cor-
responding estimated TLC (bottom). In addition, Fig. 1-(b) shows
the prediction performance of TLC-based LDPS as the warning time
increases from 0.1 to 2.5 seconds. As we can see, while the accuracy
drops from 100% to 71%, the False-Alarm (FA) rate increases from
zero to 346% approximately.

(a) (b)

Fig. 1. (a) A trajectory of lateral position with lane boundary as
the Y-axis (top) and corresponding TLC values between 0-5 seconds
(bottom); (b) Performance of TLC-based LDPS as the prediction
time (warning time) increases.

3. DIRECTIONAL SEQUENCE OF PIECEWISE LATERAL
SLOPES (DSPLS)

Let us consider a vehicle trajectory movement obtained from its lat-
eral position, which is an orthogonal distance from the lane boundary
to the vehicle’s gravity center. We segment the lateral trajectory and
its corresponding driving signals into small equal segments of length
T seconds (e.g., T = 1.0 sec), as shown in Fig. 2. Subsequently, we
compute a linear slope of lateral trajectory of each segment, slopeN ,
using linear regression fitting. Such piecewise linear slope of tra-
jectory represents an absolute direction of vehicle movement within
each segment, relatively to the curvature of lane boundary. Let us
categorize eachN -th segment into one of the following three classes
based on the estimated linear slope of its lateral trajectory:

• LN : vehicle is moving to the Left direction relatively to its
lane boundary, when

slopeN > ε, (1)

• PN : vehicle is moving relatively Parallel to its lane boundary,
when

|slopeN | ≤ ε, (2)

Fig. 2. Directional Sequence of Piecewise Lateral Slope (DSPLS) of
Lane-Crossing and Driver-Correction Events.

• RN : vehicle is moving to the Right direction relatively to its
lane boundary, when

slopeN < −ε, (3)

where ε is a pre-defined threshold (e.g., 0.01). Furthermore, each
segment is associated with its observations (ΦN ), which can be ob-
tained from the corresponding driving signals (e.g., steering-wheel
angle, yaw angle, etc.) Therefore, a trajectory of vehicle movement
can be represented as a sequence of lateral slopes of consecutive
segments, namely Directional Sequence of Piecewise Lateral Slopes
(DSPLS).

Suppose that we segment the lateral trajectory and its observa-
tions into the same length as the available warning time predicted
by the TLC indicator. Thus, the lateral trajectory during the LCE
prediction is comprised of three trajectory segments as: 1) N = 0,
for the segment right before the prediction time, 2) N = 1, for the
segment between the prediction time and the predicted LCE, and
3) N = 2, for the segment right after the predicted LCE. Fig. 2
illustrates a lateral trajectory on a straight road and its correspond-
ing assigned slope class of each segment. From this figure, a se-
quence of lateral slopes before the prediction time is {..., P

−1, R0},
and the LCE is expected on the right T seconds after the prediction
time–obtained from the TLC parameter. In this figure, the two solid
lines of lateral trajectories can be labeled as DSPLS sequences of
{R0, R1, L2} and {R0, R1, R2} for DCE and LCE, respectively.

Given the driving signals Φ0 observed during the last segment
right before the prediction time (i.e., Φ0 represents the observation
of initial trajectory for the upcoming movement), the validation of
TLC-based LCE candidates can be performed by hypothesis test be-
tween the following two hypotheses:

H0 (LCE): Φ0 will cause a DSPLS representing LCE.
H1 (DCE): Φ0 will cause a DSPLS representing DCE.
Thus, the hypothesis test to decide the occurrence of LCE is

given by:

p(Φ0, H0)

p(Φ0, H1)

(
≥ γ Lane-Crossing Event
< γ Driver-Correction Event,

(4)

where γ is a pre-defined threshold. Therefore, our challenge is to
determine the technique to compute the joint probabilities of these
two hypotheses.

Let us again consider a lateral trajectory as shown in Fig. 2.
When TLC value is less than a desired threshold δ, the LCE oc-
currence will be expected at δ seconds after the prediction time. At
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the prediction time, the lateral trajectory during the latest segment
is moving to the right direction, R0, as we expect LCE on the right.
Consequently, the LCE will really occur if the driving signals Φ0

observed at R0 lead to the DSPLS pattern {R0R1R2}. On the other
hand, LCE will not really occur if the observation Φ0 will lead to
the DSPLS of either {R0R1L2} or {R0L1} pattern. Therefore, the
probability of LCE occurrence following the observation Φ0 can be
computed as a joint probability p(R0R1R2, Φ0). Similarly, the joint
probabilities p(R0R1L2, Φ0) and p(R0L1, Φ0) represent events be-
longing to the composite hypothesis. Thus, the hypothesis test can
be performed as:

p(Φ0, LCE)

p(Φ0, DCE)
=

p(R0R1R2, Φ0)

p(R0R1L2, Φ0) + p(R0L1, Φ0)
. (5)

By using Bayes’ rule, the above equation can be computed as the
likelihood ratio [6]:

p(Φ0|LCER)

p(Φ0|DCER)
=

p(Φ0|Γ(R0R1R2))P (RRR)

p(Φ0|Γ(R0R1L2))P (RRL) + p(Φ0|Γ(R0L1))P (RL)
, (6)

where, p(Φ0|Γ(R0R1R2)) represents a conditional probability of
Φ0 generated from a generative model Γ(.) of DSPLS pattern {R0-
R1R2}, and P (RRR) represents a prior probability of a slope se-
quence {RRR} occurrence, which can be obtained from the ratio
of frequency count of such sequence to all possible sequences. A
similar equation can be obtained for the LCE expected on the left as:

p(Φ0|LCEL)

p(Φ0|DCEL)
=

p(Φ0|Γ(L0L1L2))P (LLL)

p(Φ0|Γ(L0L1R2))P (LLR) + p(Φ0|Γ(L0R1))P (LR)
. (7)

4. DRIVER BEHAVIOR MODEL

One important step to perform the previously mentioned likelihood
ratio test is to compute the probabilities of observation Φ0 given a
particular pattern of DSPLS. In our work, Gaussian Mixture Model
(GMM) framework is used as our core driver modeling technique.
GMM framework is a powerful stochastic generative model which
is successfully used in various applications (e.g., speaker recogni-
tion [7], image retrieval [8], etc.) A GMM can be represented as a
set of parameters {wm, μm, Σm}, m = 1, . . . , M , where M is the
number of mixture components, μm andΣm are a mean vector and a
covariance matrix of a uni-modal Gaussian pdf respectively, and wm

is a linear weight with a constraint
P

M

m=1
wm = 1. The GMM pa-

rameters can be obtained by the iterative Expectation-Maximization
(EM) algorithm [9] using training or development data.

The GMM parameters of a desired sequence pattern can be
trained from a pool of all the observations belonging to the first
episode of such sequence. Fig. 3 illustrates a trajectory of lateral
position and its corresponding assigned sequence of lateral slopes
(Eq. 1- 3.) For example, to estimate GMM parameters of LLR
slope sequence pattern, Γ(LLR), we first search for all of the non-
overlapped slope sequences LLR (dashed circles) from the training
data and then use the observations from the first L-labeled segments
(dashes rectangles) to train a GMM model Γ(LLR). The other
GMM models can be obtained in a similar manner as described.

Although it is necessary for a driver to maneuver a vehicle fol-
lowing the vehicle dynamic principles in order to control a vehicle

Fig. 3. Illustration of training/adapting sequences for LLR pattern.

movement as desire, it is also acknowledged that the characteristics
of driving behavior are varied among individual driver due to a
variety of factors such as experience, gender, age, physical and men-
tal states, personality, driving environment, vehicle performance,
etc. Moreover, in the beginning, the amount of observation data or
driving signals acquired from individual driver are generally sparse
which is not sufficient to train a well-defined probabilistic model.
Thus, driver model adaptation scheme is favorable for tackling such
problem. First, driver-independent models are trained from the
large amount of development data as described previously, and then
adapted into driver-dependent models using on-line observations
from individual driver in a similar manner to the training process. In
Fig. 3, the driver-dependent model of Γ(LLR) is obtained by adapt-
ing the driver-independent version with the observations from the
first L-labeled segments of the non-overlapped slope sequence LLR
observed up until the prediction time. In our work, we employed the
Maximum-A-Posteriori (MAP) adaptation technique [7] to adapt the
mean vectors of each GMM (with relevant factor = 19.0). Finally,
a set of driver-dependent models are used in the validation process
(Eq. 6 and 7).

5. EXPERIMENTAL VALIDATION

5.1. Driving Corpus

The driving corpus was collected using a driving simulator–a desk-
top type with attachable steering wheel and pedal pads. The vehicle
was installed with an adaptive cruise control (ACC) system, which
automatically keeps a distance between the driving vehicle and the
preceding car. The subjects were asked to keep their vehicle posi-
tion within the initial driving lane (i.e., no intentional lane chang-
ing allowed). The total number of participants was 94 (49 males,
45 females) with the average driving time duration about 45 min-
utes. The collected data include lateral position, vehicle velocity,
steering-wheel angle, vehicle’s yaw angle, brake pressure, throttle
pressure, etc. All driving signals are synchronized and sampled at 10
Hz. The driving corpus contains reasonable amount of lane crossing
events and nearly lane crossing events as a result of driver distrac-
tion, drowsiness, mind-wandering, etc.

5.2. Driving Signals

The driving signals used as observation feature in our work are
steering-wheel angle and yaw angle. The yaw angle is the relative
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angle between a vehicle’s heading and road curvature. The steering-
wheel angle is bandpass filtered to remove the effects of road curve
and high-frequency noise components. Consequently, observation
feature of each segment is obtained by concatenating both corre-
sponding steering-wheel and yaw angles into a feature vector (e.g.,
20-dimensional feature vector for 1-second segmentation).

5.3. TLC-based LDPS

The driving data from 14 drivers is used in our analysis which con-
tains the total of 49 lane crossing events. A standard computation
of TLC is used to predict the LCE that will happen at one second
after the prediction time (we will keep one-second prediction time
throughout this study). In our analysis, we allow a small margin of
time duration between the predicted and actual LCE occurrence to
compensate errors from sampled data and non-linearity of road cur-
vature and vehicle velocity. That is, a prediction is considered to be
accurate if an LCE occurs after warning, and false-alarm warning is
considered if there is no LCE occurrence at all. From experimental
data, at one second warning time, the TLC-based LDPS predicted
68 LCE Events, with 49 correct prediction (100% accuracy) and 19
false warnings (38.78% FA).

5.4. LCE and DCE Detection Performance

In this section, we evaluate detection performance of the DSPLS
framework in discriminating between beginnings of LCE and DCE.
A set of driver-independent GMMs with two mixture components
are trained from development data (the remaining data from selected
14 drivers) for each DSPLS sequence (e.g., ΓRRR, ΓRRL, and ΓRL

for right LCE; ΓLLL, ΓLLR, and ΓLR for left LCE.) Then, for each
driver, the observations–up until each prediction time–of particular
DSPLS pattern are used to adapted the driver-independent model. In
case of not having enough data for adaptation, we retain the driver-
independent mode for that DSPLS model. Fig. 4 shows a Detec-
tion Error Trade-off (DET) curve of LCE and DCE detection–at one
second prediction. The DET curve shows Equal Error Rate (EER)
around 17.08% with some bias of higher false-alarm rate at lower
false-rejection rate.
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Fig. 4. The DET curve of LCE and DCE detection performance.

5.5. LDPS with DSPLS

In this section, we compare the performance of the proposed DSPLS
technique to the original TLC-based LDPS. As mentioned ear-
lier, the original TLC-based system provides 100% accuracy with

38.78% false alarm rate. Once we integrated the DSPLS technique
to validate all the LCE candidates obtained from TLC-based system
and then compare the log-likelihood score with a fixed optimal EER
threshold for a decision making, the proposed technique reduces the
false alarm rate to 6.1%, while only reduces the accuracy to 91.8%
as a trade-off, as shown in Table 1.

Table 1. Comparison of Accuracy and False Alarm of LCE predic-
tion using TLC and TLC with DSPLS validation.

Methods Accuracy (%) False Alarm (%)
TLC 100 38.8
TLC+DSPLS 91.8 6.1

6. CONCLUSION AND FUTUREWORK

In this paper, we have proposed and demonstrated a promising tech-
nique to support a lane departure prediction system. The proposed
framework validates a warning candidate of a predicted lane cross-
ing event obtained from time-to-line-crossing parameter whether fol-
lowing maneuver will result in unintentional lane departure or delib-
erate driver correction of lateral position. The algorithm employs
Gaussian Mixture Models of Directional Sequences of Piecewise
Lateral Slopes representing both lane-crossing and driver-correction
events.The framework allows the driver-independent models to be
adapted into driver-dependent models using on-line driving signals
to better represent individual driving characteristics. The experimen-
tal validation using driving simulator data has showed that the pro-
posed framework can discriminate both subsequent events with de-
tection error rate of 17% EER. Consequently, DSPLS reduces false
alarm rate of the original LDPS from 38.8% to 6.1% with less trade-
off for the accuracy. The proposed framework can be extended to
support any lane departure prediction systems. Future work will
consider both long-term and short-term driver behavior character-
istics for the adaptation framework.

7. REFERENCES

[1] Transportation Authority of National Police Agency, Japan, An investigation report
for sleep disorder and safety driving, March 2007.

[2] A. Polychromopoulos, C. Koutsimanis, M. Tsogas, and A. Amditis, “Prediction
of unintentional lane departure using evidence theory,” in The 7th International
Conference on Informative Fusion, 2005, pp. 1396–1403.

[3] S. Mammar, S. Glaser, and M. Netto, “Time to line crossing for lane departure
avoidance: A theoretical study and an experimental setting,” IEEE Transactions on
Intelligent Transportation Systems, vol. 7(2), pp. 226–241, June 2006.

[4] H. Godthelp, P. Milgram, and G.J. Blaauw, “The development of a time related
measure to describe driving strategy,” Human Factors, vol. 26(3), pp. 257–268,
June 1984.

[5] C.-F. Lin and A.G. Ulsoy, “Time to lane crossing calculation and characterization
of its associated uncertainty,” Journal of Intelligent Transportation Systems, vol.
3(2), pp. 85–98, 1996.

[6] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley &
Sons, New York, USA, 1973.

[7] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker verification using adapted
gaussian mixture models,” Digital Signal Processing, vol. 10(1), pp. 19–41, 2000.

[8] H. Permuter, J. Francos, and I.H. Jermyn, “Gaussian mixture models of texture
and color for image database retrieval,” in International Conference on Acoustics,
Speech, and Signal Processing. IEEE, April 2003, vol. 3.

[9] D.A. Reynolds and R.C. Rose, “Robust text-independent speaker identification
using gaussian mixture speaker models,” IEEE Transactions on Speech and Audio
Processing, vol. 3(1), pp. 72–83, January 1995.

1376


