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ABSTRACT
An optimum target detection algorithm is developed for un-
derwater active wideband sonar signal in the presence of re-
verberation and ambient noise. The hybrid algorithm makes
use of an adaptive ANC neuro-fuzzy scheme in the first in-
stance to provide an effective fine tuned signal followed by
an iterative cross correlation-based target motion estimation
(TME) scheme for efficient target detection. Computer sim-
ulations based on real input data sets demonstrate capability
and efficiency of the proposed hybrid algorithm in extracting
even zero-Doppler target signals from a highly reverberated
noisy environment.
Index Terms— echolocation, reverberation, ANC, AN-

FIS, wavelets, optimal wideband replica correlator.

1. INTRODUCTION

Let us consider the underwater returns with reflected wide-
band target signals against a background interference involv-
ing reverberations and ambient noise. The mathematical
model of the backscattered signal in a nondirectional sonar
channel can be described as [1]

g̃(t) =
∑I

i=1 αigi(t) + η(t) (1.1)

where the wideband target signatures gi(t) associated with
echo attenuation value αi are received as Doppler distorted
pulses at time t ∈ Ω ⊂ � in the Hilbert Space of finite energy
signals L2(Ω), and the interference η(t) involves a reverbera-
tion waveform r(t) and additive ambient noise n(t):

gi(t) =
√

Siψ(Si(t − Di)), η(t) = �(t) ∗ r(t) + n(t).(1.2)

Here ψ denotes the transmitted signal, Si and Di represent
the true Doppler scale and two-way time-shift of the ith echo,
respectively, and � is an unknown arbitrary noise path filter
convoluted with the reverberation pulses to further compli-
cate the scattered returns. Reverberations due to multiple re-
flection from the medium boundaries including the surface,
volume and bottom usually contribute in varying proportions.
With the scenario chosen for which the sonar devices are as-
sumed to be mounted on a surface ship, the scattering process
and the dependence of the received reverberation on range can
be modelled in terms of having an intensity with exponential
statistics or an envelope, a square root of the intensity, with the
Rayleigh statistic. The probability density function of the re-
verberation model distributed by the Rayleigh statistics is then
given by ℘(γ|σ) = γ

σ2 e−γ2/2σ2

where γ is the amplitude of
the envelope and σ is the standard deviation representing the
expected level of intensity.
The aim of the model in Eqs. (1.1-1.2) is to isolate spec-

ular returns from the background interference. Hence, a pair
of scale-time joint motion parameters (Ŝi, D̂i) associated
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with the ith return can then be estimated. Technique used to
measure the scale-time of objects is commonly known as the
wideband cross correlation or matched filter processing [2].
The wideband cross correlation processing works well and
has optimum performance with the maximum output of target
strength [3]. In the presence of severe interference includ-
ing reverberation and ambient noise, an ANC neuro-fuzzy
scheme powered by ANFIS [4, 5] processor has offered a
possible remedy to effectively remove unwanted noise. The
stage of noise cancelling exploits capabilities of ANFIS in
tracking both linearity and nonlinearity between signal and
interference/noise, and hence improves the target strength.
More recently, an iterative CWT-based TME scheme [5] was
incorporated with the ANC neuro-fuzzy scheme to yield a
complete hybrid algorithm. CWT-based TME scheme pro-
posed was not only to effectively localize and identify targets,
but also as a step towards an efficient hardware implemen-
tation. Due to sidelobe correlation occurred at the CWT
mapping, an alternative cross correlation-based TME scheme
consisted of rimmed mean (TM)-levelization, discrete wavelet
denoising (WDeN), and the optimal wideband replica corre-
lator (WRC) is proposed to alleviate the sidelobe correlation
interference [6] and thus increase accuracy of the target de-
tection in terms of motion parameters estimation. Simulation
results based on real input data sets show that with a little
help from the ANC neuro-fuzzy scheme in the first instance,
the proposed cross correlation-based TME scheme is effective
and cost-efficient in recovering even zero-Doppler with very
low echoes from a highly reverberated noise environment.

2. OPTIMALWIDEBAND CORRELATION PROCESS

2.1. Wideband correlation
Having a system model in Eq. (1.1), a point target return can
be described as a wideband cross ambiguity function [2]:

WCψg̃(s, τ) =
∫∞
−∞ g̃(t)ψs(t − τ)dt (2.1)

where ψs(t) ≡
√

sψ(st) constituting the form of a hypotheti-
cal signal with a Doppler scale s is a template. Eq. (2.1) some-
times is referred to as wideband matched filter or WRC, and
the standard cross correlation estimator maximizes the magni-
tude squared of the WRC for detection of known waveforms
of unknown complex amplitude and unknown time of arrival
(TOA) of targets distorted by background interferences. If the
incoming signal receives maximum output target strength in
terms of SNR and η(t) is an additive white Gaussian noise
of known variance, the correlation process is optimum [3].
Assume that the transmitted signal ψ(t) is completely spec-
ified and characterized by a modulation functionm(t) having
a unity power within an envelope w(t), i.e.,

ψ(t) = w(t)m(t), subject to ||m(t)||2 = 1. (2.2)

Since the statistic of WRC is tested against a threshold for the
presence of a received complex echo and the local maximum
is an estimate of the TOA, the WRC detection can be solved
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by equivalently seeking a local maximum of the RC output
with respect to w(t) over both parameters simultaneously:

maxs>0,τ∈Ω{|WCψg̃(s, τ)|2} = |WCwg̃(s
∗, τ∗)|2

where (s∗, τ∗) is a pair of local maximizer. Since s∗ in the
correlation process is proportional to the true scale, one can
accordingly obtain the desired parameters Ŝ = s∗/ε, ε > 0

and D̂ = τ∗ as estimates of S and D, respectively. Conse-
quently, the echolocation single point target detection may be
solved by seeking a local maximum of the continuous time-
scale joint representation:

maxs>0,τ∈Ω{|WCwg̃(s, τ)|2}. (2.3)

The above single point target problem can be extended to a
multi-target one, which can be written as a multi-dimensional
semi-infinite quadratic programming problem:

max f(s, t) =
∑m

i=1 |WCwg̃(si, τ(t))|2
subject to s(t) > 0m,∀t ∈ Ω.

where s ≡ [s1, . . . , sm]′ ∈ �m denotes a vector form of m-
target Doppler scales.

Remark 2.1

• The detection process in time domain through Eq. (2.3)
is independent ofm(t), which is modulated by a carrier
frequency. This advantage makes it easier to implement
digitally as only the window function (a lowpass wave-
form) needs to be sampled. In contrast, the carrier fre-
quency in frequency domain cannot be separated from
the window function due to the wideband condition [2].

• By defining the unity modulated signal in Eq. (2.2),
the WRC employs only the mainlobe of the replica.
This has alleviated the sidelobe correlation interference
problem [6] in which strong, near-specular unwanted
harmonics of the transmission entering the mainlobe
correlating with the unmodulated replica.

2.2. Discrete mapping of the WRC
We will require a discrete-time version of Eq. (2.3) for digital
implementation. The discrete-time equivalent of the WRC can
be processed through matched filtering in the sequence space

2 as follows:

WCwg̃(s, τ) =
√

s
∫∞
−∞ g̃(τ + t)w(st)dt

=
√

s
∑

l

∫ l+1

�
g̃(τ + t)w(st)dt. (2.4)

Let g̃(t) = g̃(l) ∈ 
2 for all t ∈ [l, l + 1]. Eq. (2.4) can be
approximated as

WCψg̃(s, τ) ≈ √
s
∑

l g̃(τ + l)
∫ l+1

�
w(st)dt

= 1√
s

∑
l g̃(τ + l)

∫ s(l+1)

sl
w(t)dt =

∑
l g̃(τ + l)M(s, l).

Provided an effective support t ∈ [−Tw, Tw] for w(t) with the
sampling rate fw, the discrete indices l are bounded within
[−Tw/s,Tw/s]

2Tw/s (2Twfw − 1) and the matched filterM(s, l) can
be obtained:

M(s, l) = 1√
s

[∫ s(l+1)

−∞ w(t)dt − ∫ sl

−∞ w(t)dt
]
. (2.5)

Now let us consider Eq. (2.3) with support t ∈ [0, T ]. The
discrete-time version of the problem following from Eq. (2.5)
consists of breaking the time interval [0, T ] into N subinter-
vals, and approximating the input signal g̃ ≡ [g̃(0), . . . , g̃(N−
1)]. The correlation coefficient obtained for the (k + 1)-th in-
put signal, g̃(k) is then expressed by an output response with
coefficients h(s, k) at the scale s , i.e.,

WCwg̃[s, k] = y[s, k] =
∑N−k−1

�=0 g̃(s, k + 
)M(
)(2.6)
for k = 0, . . . , 2N − 2. Due to the discrete setting in the
time-domain, the target detection in the continuous time-scale
joint setting of Eq. (2.3) is reduced to a semi-infinite scale set-
ting problem. Consequently, the problem of seeking a pair of
optimizer (s∗, τ∗) may be solved by the following algorithm:

Algorithm 2.1 [7] Set i = 1. Let f(s) ≡ ∑N−1
k=0 |ŷ[s, k]|2,

where ŷ[s, k] = ĝ(k)oM(s, k) and ĝ is a denoised signal of g̃.
Denote fn(s), n = 1, 2, . . . by the n-th derivative of f(s). De-
fine ε > 0 and Doppler scales s0, smin, smax which represent
the stationary, minimum and maximum target motions, respec-
tively with their corresponding time indices k0, kmin, kmax.
1. Find an optimizer ŝ∗i that maximizes f(s), i.e., ŝ∗i =

arg maxs>0 f(s).

2. Provided the scale ŝ∗i , the corresponding time-delays
τ̂∗ni,j = τ̂∗i (kn

j ), j = 1, 2 . . . can be obtained for which
indices kn

j are given by

kn
j = arg maxk{|fn(ŝ∗i ) − f(ŝ∗i )|}. (2.7)

3. If the stopping criteria
|kn

j −k0|
max{|kmin−k0|,|kmax−k0|} < 1, |kn

j − kn−1
j | ≤ ε

are satisfied, then stop and set (s∗, τ∗) = (ŝ∗i , τ̂
∗
i (kn

j ));
otherwise return to Step 1. with index i replaced by i+1.

3. HYBRID ALGORITHM AND COMPUTER
SIMULATIONS

Depicted by Fig. 1, the proposed hybrid algorithm includes
two schemes: ANC neuro-fuzzy scheme in Fig. 1(a) and cross
correlation-based TME scheme in Fig. 1(b).

3.1. ANC neuro-fuzzy scheme
The adaptive ANC neuro-fuzzy scheme consists of a primary
input channel corrupted by two types of interference: ηrn

and
ηn in the reference channel and is processed by the adaptive
neuro-fuzzy inference systems (ANFIS). In particular, two un-
known systems with noise path filters, �1 and �2 are applied as
parts of the scattered return adding together with the contact
signal to form the primary channel. For simplicity, the noise
path filters are chosen to be characterized by linear/nonlinear
functions with two reference inputs x1 and x2:

�1(x1, x2) = 20(x1 + x2) + 5

�2(x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)
2.

For the ANFIS model, the input data training set is received
from the reference channel formed by combination of rever-
beration signal and ambient noise. Given membership func-
tions (MFs) on each inputs, the ANFIS operation adaptively
localize the nonlinear relationships among η, r, and n, thus,
produces an estimate η̂(t) in the output. The noise data con-
tained in the high frequency ranges of the input signal is then
subtracted and thus yielded an estimated output.
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3.2. TME scheme
Provided the denoised signal as source of input, the iterative
TME scheme is devoted to further noise suppression and final
target identification for which potentials reside in a very low
frequency. The TME scheme is comprised of three processes:

• TM-levelization: Its functionality is to generate dy-
namic level-based step-sizes to keep updating the TME
scheme. As the process slides through the ANC neuro-
fuzzy output, two dynamic gauges TMα1

and TMα2

are introduced at different level to achieve fast conver-
gence by removing power of most of the sharp detail
information in the sense of trimmed mean estimation.

• WDeN: This operation is associated with an octave sub-
band decomposition designed to further suppress the
noise part of the training data by using thresholding rule
to the detail coefficients. The denoising operation is
proven to be efficient as can be viewed as a nonpara-
metric estimation of the noise-free desired signal [9].

• Optimal WRC: This function is to resolve the discrete-
time version of Eq. (2.3) by going through Algo-
rithm 2.1 iteratively. In particular, one needs to solve
a constrained optimization problem with continuous
nonlinear objective function of the Doppler scale s in
Step 1. Instead of discretising the continuous-scale us-
ing a sampling rate sufficiently high to capture enough
information for approximating the optimal solution,
the nonlinear optimization problem can be solved by
a combination of golden section search and successive
parabolic interpolation method [10].

3.3. Processing results
We test the hybrid algorithm for underwater multiple target
detection using real sonar data sets based on Morlet wavelet
as the signal source for target echoes and reverberation wave-
form. For each ping, the source sweeping continuously over a
2ms long transmission interval of 1 second amid the follow-
ing environment settings: sea depth (=100m), sonar depth
(=50m), wind speed (=6m/s ∼ sea state 3), seabed type
(=medium sand), target range (=500m). Two synthetic dis-
crete contact signals gT1

and gT2
with details described in

Table 1 were added to the background interference shown in
Fig. 2(a) with TOA of T1 and T2 marked with circular char-
acter. The interference containing reverberation waveform
r(t) and white Gaussian noise n(t) with WGN(0, 0.25) are
sampled at fs = 100kHz and depicted in Fig. 2(b). The
composite ANC primary input signal with the echo strength
of SNR = -30dB is shown in Fig. 2(c). More specifically,
the interference waveform is a result of four-channel outputs
going through two unknown noise path filters. These channels
including two reverberation channels and two ambient noise
channels process data to collect totally N = 100k input-
output data pairs in the fuzzy inference system for predicting
the behavior of the unknown nonlinear noise path filters.
Among them 50% of the data set is taken for the training
nodes, and 50% of the others is for checking modes to vali-
date the fuzzy model. Provided two Gaussian MFs on each
of the four-channel reference outputs, patterns of noise resid-
ing in the high frequency ranges were estimated involving 8
epoches of ANFIS operation leading the output of the ANC
neuro-fuzzy scheme to an estimated signal for identifying T1
of the contact signal gT1

. As compared with the composite
signal in Fig. 2(c), Fig. 3(a) shows that most of the noisy
signal have been removed leaving the signal at hand contains
sufficient information ready to proceed in the TME scheme.
Passing the data through the TM-levelization process with set-
ting TMα1

= TMα2
= 0, noise in the low frequency ranges

is further suppressed by the WDeN process whose output is
depicted in Fig. 3(b). By setting up parameters described in

Table 1 for the replica function w(t), Fig. 3(c) shows the the
resultant signal of Eq. (2.7) with the order n = 2, i.e., the 1st

iteration of the TME scheme with an estimated location T1e
marked with diamond character. Clearly, the optimal WRC
process fails to resolve the T1 marked with circle character.
Increasing the TM level by TMα1

= TMα2
= 7.5 × 10−4

equivalent to removing power of 15.67dB down from the
peak magnitude of the ANC output following by the WDeN
process has yielded more noise being suppressed out of the
system as can be viewed in Fig. 3(d). The target detection
for T1 was successfully carried out through the optimal WRC
process at the 2nd iteration of TME whose output is shown in
Fig. 3(e) where as can be also viewed clearly in Table 2 the
estimated location of TOA T1e closely matched to the ideal
location T1. We note that the ideal outputs in Table 2 are given
as reference for the purpose of comparison only.
Similar to the detection of T1, Figs. 4(a)-(e) gives details

of detection done for the T2. More precisely, the ANC out-
put depicted in Fig. 4(a) yields an estimated signal ĝ being
fine tuned by ANFIS with 8 epoches of operation. Follow-
ing by the 1st iteration of TME scheme, the denoised signal
by the WDeN process is presented in Fig. 4(b) leading to a
false alarm T2e and is shown in Fig. 4(c). Increasing the TM
level to TMα1

= TMα2
= 7.5×10−4 equivalent to 15.64dB

down from the peak magnitude of the ANC output, Figs. 4(d)-
(e) show a successful detection at the 2nd iteration of TME
scheme. In particular, the denoised signal in Fig. 4(d) has
paved the way for lower linear/nonlinear mapping in the op-
timal WRC process to arrive at the estimated location T2e in
Fig. 4(e) exactly matching the ideal location T2. Details of the
ideal and estimated motion parameters regarding the synthetic
echoes gT1

and gT2
are illustrated in Table 2.

4. CONCLUSION

A hybrid algorithm consisting of an adaptive ANC neuro-
fuzzy and iterative cross correlation-based TME schemes was
developed to obtain a joint estimate of Doppler time-scale for
underwater active sonar system. The adaptive ANC scheme
was used in the first instance to improve the target strength
by effectively removing unwanted noise including sidelobe
correlation interference and noise contained in the high fre-
quency ranges. The iterative TME scheme was then employed
to further reduce noise and hence estimate a joint Doppler
time-scale parameter in an efficient and accurate manner.
An illustrative example considering multiple target detection
using real sonar data sets was cited at the first time, which
demonstrates the capability and efficiency of the proposed
algorithm in extracting target signals with a very low echo
level.
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TOA Location T1 T2
Synthetic Echo Duration (ms) 2 2

Setting Amplitude (αi) 0.3 0.5
SNR (dB) −30 −30
Replica Sampling Freq. 0.84656

WRC Replica Support [−189, 189]
Setting Filter Taps No. [300, 420]

Doppler Scale [0.9, 1.26]

Table 1. Characteristics of synthetic echo and WRC.

Synthetic echo gT1
gT2

Hybrid Output Ideal TME Ideal TME
Onset time (s) 0.18 0.17973 0.23 0.23
Velocity (Kn) −0.1 0.3333 1.0 1.0
Location 18100 18105 23117 23117
Range (m) 135.744 135.781 173.372 173.372

Table 2. Comparison between Ideal outputs and the TME out-
puts.

TM-α TM-α1 2

Levelization

Optimal

Fig. 1. Adaptive noise cancelling concept for sonar system model.

Fig. 2. Time-domain received signals. (a)Noise-free synthetic
echoes. (b)Additive interference. (c)Composite returned signal.

Fig. 3. T1 detection: (a)ANC neuro-fuzzy output. (b)WDeN output
at the 1

st iteration of TME. (c)Output of the optimalWRC. (d)WDeN
output at the 2

nd iteration of TME. (e)Output of the optimal WRC.
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Fig. 4. T2 detection: (a)ANC neuro-fuzzy output. (b)WDeN output
at the 1

st iteration of TME. (c)Output of the optimalWRC. (d)WDeN
output at the 2

nd iteration of TME. (e)Output of the optimal WRC.
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