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ABSTRACT

Complete or partial three-dimensional reconstruction of objects from
multiple angle-views, or poses, is important in several applications
such as photogrammetry, machine vision, and computer-aided de-
sign. Knowledge of the pose angles and their proper ordering are
required for accurate reconstruction. When these multiple angle im-
ages are acquired in random order and the angle of view information
is not available the poses have to be put into proper order. This work
presents an approach based on principal component analysis (PCA)
for automatic ordering of random object poses. A measure based
on local curvature and correlation of the estimated pose trajectory in
a multidimensional manifold is also developed to assess confidence
in the ordering. In addition to providing a degree of confidence for
pose ordering with single cameras, this measure enhances the pose
estimation accuracy in double and multiple camera systems by pro-
viding a basis for camera selection for different poses. The paper
presents theoretical development and experimental results.

Index Terms— principal component analysis, photogrammetry,
pose recognition, pose estimation, multi-camera image processing.

1. INTRODUCTION

Most algorithms for 3d object reconstruction from images require
knowledge of the object’s pose relative to the camera. Examples of
reconstruction algorithms can be found in [1, 2, 3]. Unless a priori
knowledge of the sequence of poses is available, the methods have
trouble matching object geometry with motion. Other methods such
as photogrammetry, struggle with the process of making measure-
ments from images with unordered data sets [4]. An unordered im-
age data set is one that corresponds to non-monotonically changing
view-angles of an object or scene. This usually occurs when images
are taken in asynchronous fashion at random instances in time. Some
examples of situations where unordered sequences of images occur,
can be found in aerial surveillance, and unsupervised learning of ob-
ject training sets for humanoid robots [4, 5]. Reordering the image
sequence to correspond to ascending or descending order of view-
angles is necessary to enable good reconstruction. Such object pose
ordering has potential applications in image matching, photogram-
metry, scene and object recognition, pose recognition, and facial fea-
ture analysis [6, 7].

Methods for object pose recognition can be found in [8]-[10].
These methods use large databases of training sets. There has been
research addressing object recognition at various poses using image
keypoints [6, 11, 12]. However, these do not address the issue of
sequencing the pose order of multiple images. Other papers dealing
with image matching [4, 7], also do not address these issues.

This paper develops approaches for pose ordering using the idea
that different poses of the object can be connected to construct a
smooth manifold in eigenspace. Further, a multi-dimensional confi-
dence measure is developed to assess the accuracy of ordering. This
confidence measure can also be used in a multi-camera object recog-
nition system to choose the best view for improved pose ordering
accuracy.

2. APPROACH

2.1. Principal Component Analysis

The first step is to perform PCA on the image set. Each image xi

of size MxN in the randomly captured sequence is formed into an
MNx1 vector. This is done for the entire set of images and con-
catenated into a matrix X = [x1, ..., xK ] of random object poses.
Normalization is not done across the image set. This way, illumi-
nation and shadows are preserved as these are seen as features for
ordering poses. The next step is to calculate the eigenspace of the
random set. The eigenspace basis matrix E is composed of the L
largest corresponding eigenvalues for some L.

The projection g (xi), of size Lx1, of the image onto the
eigenspace is then calculated and used as the feature space.

g (xi) = xT
i E (1)

2.2. Object Pose Ordering

The proposed approach for ordering images is an iterative process.
Let Sj and Θj be the set of unordered and ordered images at iteration
j, respectively. To begin, S0 is the entire set of unordered images
and Θ0 is the empty set of ordered images. At iteration j = 1, a
randomly chosen image is labeled x1 and moved from S0 to Θ0,
yielding S1 and Θ1. For j ≥ 2 an image xj is moved from Sj−1 to
Θj−1 such that

xj = argmin
x∈Sj−1

(‖g (xj−1)− g (x)‖) (2)

Thus, the ordering algorithm picks from the unordered set, the
image closest to the last ordered image in eigenspace. Once the
images have been ordered using the minimum separation, a confi-
dence measure is computed using local curvature along the trajectory
(called the object manifold) of the ordered images in eigenspace.

Let dsj be the vector:

dsj = g (xj)− g (xj−1) (3)

The cosine of the angle between the vectors is the correlation
coefficient:
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Fig. 1. Curvature explanation in a 2-d eigenspace

cos (θj) =
dsT

j dsj−1

‖dsj‖ ‖dsj−1‖ (4)

The distance between vectors is then computed by subtracting
the two vectors. The difference equation is an approximation to the
second order derivative for curvature:

κj =

√
(dsj−1 − dsj)

T (dsj−1 − dsj) (5)

The confidence in ordering metric is given by:

cj = κj (1− cos (θj)) (6)

The confidence metric cj attempts to use a combination of three
local image projections to measure the alignment and the curvature.
The alignment is equivalent to the congruence coefficient across
three images and is equal to zero when they are in a straight line.
The curvature acts as a weight across the combination of the three
images. A low confidence measure indicates the images are chang-
ing slowly and pose classification is more accurate in this region
and a high measure of confidence means the images are changing
erratically. For this confidence measure, a low value is desirable
to indicate correct ordering. The geometric description of these
measures can be seen in figure 1.

2.2.1. Two Camera Ordering

The method is extended to the case where two synchronized cameras
are available. Since the cameras are synchronized, we can compare
the times indices of each camera. By independently ordering each
camera’s images, it can be said that if the time indices do not match,
then an error in ordering has occurred. The difficulty lies in de-
termining automatically which camera view is more likely to have
incorrectly ordered the images. This is done by comparing the con-
fidence cj developed in the previous section and time indices of each
camera to determined if an error has occurred and which camera has
the lower confidence of error. If ccamera1

j > ccamera2
j then camera

2 is chosen for the next view and vice versa.

2.2.2. Two Camera Configuration

The experimental configuration used includes a single camera and
an additional second camera 90o apart in viewing angle to improve
performance. The object is placed on a motorized turntable and data

is captured. The two cameras are synchronized and the configuration
can be seen in figure 2. The image frames are then placed in random
order using a random number generator. The desired configuration
is chosen in an attempt to untangle the object manifold geometry in
eigenspace.

Fig. 2. Two camera configuration

Fig. 3. Flow Chart of two camera algorithm

3. RESULTS

The results were obtained from multiple ordered sequences of ob-
ject data sets. The objects were scrambled in MATLAB using the
uniform random number generator. A known sequence is used to
help with assessing the results of ordering. The random number set
is used to produce an equal distribution for the full rotation of the
object. A set of images that includes a full rotation of the object
ensures that the first and last images are connected in eigenspace.
It also makes error counting and validation of the ordering simpler.
The video frame rate is 16 frames/sec and the number of poses in a
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set varies from 30-37 depending on the random number seed. The
images are downsampled by a factor of 4 to a size of 80x60. This is
done to accommodate the large size of the covariance matrix. The
formulation of the covariance matrix for PCA is not normalized by
illumination. It is thought that illumination is a feature for recogni-
tion of objects and scenes used by human vision.

The error rate for object ordering is calculated manually by vi-
sual inspection of the images and counting the number of incorrectly
sequenced images. An error is defined if the next pose does not cor-
respond to the current pose for the set of images. Error rate is cal-
culated for the entire set by summing the total number of errors and
dividing by the number of images in the set.

Objects without distinct features have failed to order properly
in the single camera case because of the similarity of views. The
objects without saliency in table 1 the tape dispenser and the truck.
For these types of objects, the recognition errors generally misclas-
sify the front and back views corresponding to 180o of rotation. In
eigenspace, this is where the manifold wraps around itself and be-
comes tangled. This can be shown in figure 5, where the circled
region represents the problem area when the next angle-view is not
the minimum distance. The dotted line shows the errors for order-
ing with a single camera. The solid line shows the precise mani-
fold structure, corrected by two cameras with the confidence metric.
The confidence measure helps to select the camera whose manifold
section is the most flat and is the minimum distance across images.
Figure 6 shows an example of a section of the manifold where cam-
era 1 has made an error and camera 2 is chosen as the correct order.
The solid line in figure 5 shows the correct manifold reconstruction
using two cameras. Figure 4 shows an example of the confidence
selecting between camera 1 and camera 2 for front and side views of
the tape dispenser. The images displayed in figure 4 are seen from
the perspective of camera 1. As the front view appears, camera 1
has trouble with recognizing the next pose, therefore, it switches to
camera 2.

Table 1. Error Rate of Ordering Various Objects

Object Single Camera Two Cameras Gain

Tape dispenser 17.0% 0.9% 16.1%
Stapler 9.1% 0.3% 8.8%
Truck 6.7% 0.3% 6.4%
House 3.0% 0.9% 2.1%

Airplane 1.5% 0.3% 1.2%
Cylinder 0.6% 0.0% 0.6%
Battery 0.3% 0.0% 0.3%

4. CONCLUSION

A method has been developed for ordering image sets of multiple
angle-views using a single camera. This can be done by using PCA
and minimum distance classification in eigenspace to sequence the
images in the order relative to the angle viewed by the camera. The
method has been extended to the case of a second camera being
added at a 90o viewing angle relative to the first camera view. A
method to minimize ordering errors is then developed using a super-
feature as a confidence meausure to choose between the two cam-
eras. The superfeature is a combination of manifold curvature and
correlation coefficient in the manifold eigenspace. The confidence
metric is a measure of the flatness and closeness across three images

Fig. 4. Ordered images for the tape dispenser as seen from camera 1

Fig. 5. Reconstruction of the object manifold using a single camera.
The circled region displays errors in ordering where the manifold
overlaps.

in eigenspace. The results show up to a 16% recognition perfor-
mance gain from the using the confidence measure with two cam-
eras. The addition of a double camera framework attempts to un-
tangle a complex multidimensional manifold in eigenspace. Along
with object ordering, this confidence measure can also be used in
a multi-camera pose recognition system where the best camera for
recognition can be chosen.
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Fig. 6. Selcted region of the manifold where an eratic change has
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