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ABSTRACT

Detection of malaria parasites in stained blood smears is crit-
ical for treatment of the disease. Automation of this process
will help in reducing the time taken for diagnosis and the
chance for human errors. However, the variability and arti-
facts in microscope images of blood samples pose signi cant
challenges for accurate detection. A scheme based on HSV
color space that segments Red Blood Cells and parasites by
detecting dominant hue range and by calculating optimal sat-
uration thresholds is presented in this paper. Methods that are
less computation-intensive than existing approaches are pro-
posed to remove artifacts. The scheme is evaluated using im-
ages taken from Leishman-stained blood smears. Sensitivity
and speci city of the scheme are found to be 83% and 98%
respectively.

Index Terms— Segmentation, malaria diagnosis, chro-
matin dot detection

1. INTRODUCTION

Malaria is a widely prevalent disease affecting millions of
people in various parts of the world. Microscopic observation
of blood smears of patients is considered the gold standard of
diagnosis. The blood smears are usually observed by a per-
son manually and the quality of diagnosis is thus dependent
on the level of training of the observer. Further, the time taken
to observe a smear typically ranges between 15-20 minutes.
Automatic processing of the blood smear images will help
in providing fast and consistent diagnosis. This paper deals
with results of investigation into the development of image
processing schemes for this purpose.

There are examples of work on diagnosis of malaria from
blood smear images in the literature. The method in [1]
transforms the images to match the characteristics of a ref-
erence color image. A Bayesian pixel classi er is used to
mark stained pixels and features are extracted from them.
A distance weighted K-nearest neighbor classi er is trained
with them to classify the pixels as parasite and non-parasite.
The method proposed in [2] attempts to mimic a human
technician. It uses morphological and threshold selection

(a) Ring (b) Trophozoite (c) Schizont (d) Gametocyte

Fig. 1. P. falciparum: Stages found in blood [4]

techniques to identify (red blood cells) RBCs and parasites.
Image features based on color, texture and geometry of RBCs
and parasites are generated. These are presented to a two-
stage tree classi er using back-propagation feed-forward
neural networks for species classi cation. The scheme dis-
cussed in [3] is based on a multi-stage estimation process
with minimal prior knowledge starting from a representation
of RBCs. It compensates for imaging variability by using a
correction process on the intensity component in HSI space.
An elliptic template is designed and used to extract RBCs
from an image.

In this paper we present techniques to segment parasites
in stained images. The scheme is based on segmentation of
RBCs and parasites in HSV color space and handles the vari-
ability of the images. Distinguishing features of this work
are: (a) Focus on segmentation/detection of chromatin dots
for malaria diagnosis whereas earlier approaches focused on
gross level features extracted from RBCs without looking at
parasite components (b) Incorporation of accuracy enhanc-
ing features such as geometric distance measurement for false
positive reduction (c) Handling of image variability without
need of normalizing with respect to a standard (d) Adapta-
tion of parameters to a given image without need to train and
(e) Use of Leishman-stained images which are widely used in
malaria infested rural areas of India.

2. BACKGROUND

P. falciparum, P. vivax, P. ovale, and P. malariae (P. for plas-
modium) are the four species of malaria that infect human
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Fig. 2. Hue scale [5]

Table 1. Hue angle and color type
Hue Angle Color Type

0o red
60o yellow
120o green
180o cyan
240o blue
300o magenta

beings. The parasite appears in four stages in blood - ring,
trophozoite, schizont, and gametocyte. These stages are iden-
ti ed based on the appearance of cytoplasm and chromatin
dots. They take different forms depending on the species and
stage of the parasite (Fig. 1). The chromatin dots are the dot-
ted structures seen in all four sub gures. They are the DNA
complex of the parasite. A lot of them are seen in the schizont
and gametocyte stages while one or two are seen in the ring
stage. The purplish material (including the rings in Fig. 1(a))
is the cytoplasm within the parasite.

The malaria parasites infect RBCs and hence are usually
located inside them. Pathologists use color as a cue to identify
RBCs and parasites in stained samples viewed with a micro-
scope. However, segmenting RBCs and parasites in an image
is not a trivial task. This is because of the fact that the colors
of the background, RBCs and parasites vary depending on the
pH of the buffer used for smear preparation as shown in Fig.
1. Further, the presence of artifacts (objects other than RBCs
and parasites) complicates the segmentation process.

3. PROPOSED SCHEME

We segment the RBCs and then check if a parasite(s) has in-
fected them. We develop a color-based method to segment
parasites and RBCs. Chromatin dots are more easily distin-
guished from the RBC than cytoplasm which is a delicate
structure that shows great variability. Hence our approach
focuses on isolating chromatin dots in the image. The in-
put images are obtained in RGB color space. Since the RGB
color space is not intuitive for processing, we choose the HSV
color space which offers a convenient representation where
hue, saturation, and value indicate the quality by which we
distinguish one color family from another, a strong color from
a weak one, and a light color from a dark one respectively [5].
Figure 2 and Table 1 show the hue angles and the correspond-
ing color types.

We choose appropriate ranges of hue and saturation to
segment RBCs and chromatin dots. However, the same hue

(a) RBCs (b) Chromatin dots

Fig. 3. Schematic illustrating the calculation of optimal
thresholds to segment RBCs and chromatin dots from satu-
ration histogram.

and saturation values cannot be used for all images due to
color variability (Fig. 1) and hence have to be adaptively cho-
sen for each input image. One approach to overcome color
variability would be to transform each input image to a nomi-
nal reference color distribution [1]. However, there is enough
variability between the objects of interest (RBCs and para-
sites) and the background that even with such a transforma-
tion, there is no assurance that such objects occupy well de-
ned color ranges in the nal image. We therefore propose an

approach where we dynamically determine the background
and process the remaining pixels to identify the objects.

The dominant color in these images is representative of
the background (i.e., region excluding RBCs and parasites).
We divide the entire hue range of 360o into six segments
where each segment has a width of 60o and is centered around
a color type as given in Table 1. Then we determine the dom-
inant color type p by nding the number of pixels Ni that fall
within each hue segment i, 1 ≤ i ≤ 6 and identifying the
peak value Np (i.e. p is associated with the mode of the hue
distribution). The pixels corresponding to the remaining seg-
ments i, 1 ≤ i ≤ 6 and i �= p are segmented to identify RBCs
and chromatin dots by using an appropriate saturation thresh-
old. However, if the dominant color type exceeds a certain l

percentage of the total pixels (i.e., Np∑ 6
i=1 Ni

> l%), then only

the saturation component is used for segmentation.
Optimal saturation thresholds to segment RBCs and chro-

matin dots have to be identi ed. We use the method proposed
in [6] to select an optimal saturation threshold to segment
RBCs. The method was found to give an optimal threshold
for bimodal distributions but did not work well for unimodal
distributions such as the one shown in Fig. 3(a). To overcome
this problem we use the fact that RBCs typically occupy a cer-
tain percentage of the area of an image. We count the number
of pixels N c

r and N c
l respectively that exceed and fall below

the speci ed threshold T c (Fig. 3(a)). If Nc
r

Nc
l

> n% for some
n (our measurements with the images show this to 10%), then
the threshold T c is valid. Otherwise we derive the threshold
by applying Otsu’s method to the pixels that fall below this
threshold.The process is repeated until convergence.
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(a) Blue background (b) Red background (c) Red background

Fig. 5. Sample images of P. Falciparum

(a) (b)

Fig. 4. (a) Schematic showing the containment of chromatin
dot in RBC. The bold dots indicate the centroids of RBC and
chromatin dot. d, rc and rp denote the distance between cen-
troids, radius of RBC and radius of chromatin dot respec-
tively. (b) Schematic showing the false containment of chro-
matin dot in RBC.

The saturation values of the chromatin dots fall in the out-
lier zone of the histogram. To segment chromatin dots we
make use of the fact that parasite pixels occupy at most a cer-
tain fraction of the RBC pixels (considering the maximum
parasite density possible). Figure 3(b) shows a schematic for
computing the threshold to segment chromatin dots. Only
those pixels that belong to the RBCs are processed. If Np

r

Np
l

<

m% for some m (typically 2%), then the threshold T p is con-
sidered valid. Otherwise we apply the threshold selection
method again to the pixels that fall above this threshold. The
process is again repeated until convergence.

The segmented images are often found to contain noise
and the RBCs are found to have holes (vacuoles) inside. We
overcome these problems to a certain extent by using morpho-
logical ltering with a circular structuring element of radius
3. The ltered images are labeled to assign unique numbers
to chromatin dots and RBCs. The platelets typically pass the
thresholds set for RBC segmentation. However, the area of
a platelet is much smaller compared to that of an RBC and
an area threshold is used to eliminate them. Further, the arti-
facts and nuclei of White Blood Cells (WBCs) tend to pass the
thresholds for chromatin dots. The areas of nuclei of WBCs
are larger as compared to that of a chromatin dot and hence
an appropriate threshold is used to remove them.

To remove the other artifacts, we use the fact that parasites
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(b) Saturation

Fig. 6. Hue and saturation histograms for image in Fig. 5(a)

are usually located in RBCs. To detect whether a chromatin
dot is within an RBC we propose a two-step method. We com-
pute the centroids for each RBC i and each chromatin dot j
denoted by (xi

c, yi
c) and (xj

p, yj
p) respectively. We then deter-

mine the radius of the Minimum Bounding Circle (MBC) of
each RBC (ri

c) and each chromatin dot (rj
p). A chromatin dot

j is present within RBC i if
√

(xi
c − xj

p)2 + (yi
c − yj

p)2 ≤ ri
c + rj

p (1)

This is schematically represented in Fig. 4(a). However, this
scheme may not yield appropriate results if the RBCs over-
lap each other as illustrated in Fig. 4(b). To overcome this
problem, we check if the number of overlapping chromatin
dot and RBC pixels exceed a certain percentage (say k%) of
the area of a chromatin dot. Classi cation as chromatin dot is
declared to be valid if this condition is satis ed.

4. EXPERIMENTAL RESULTS

We have evaluated the performance of our scheme using sev-
eral images taken from Leishman-stained blood smears . The
resolution of the images considered is 1391 × 1040 and with
8 bits per color component. The images are median ltered
using a window of size 3 × 3 to remove noise.

Figure 5 shows three of the images used in our experi-
ments. The hue histogram for the image in Fig. 5(a) is shown
in Fig. 6(a). The number of pixels in each hue segment for
the images in Fig. 5 are given in Table 2. The algorithm iden-
ti es blue as the background color for the image in Fig. 5(a)
and red for the images in Fig. 5(b) and Fig. 5(c) respectively.
These are consistent with visual observation as well.

The saturation histogram for the image in Fig. 5(a) is
shown in Fig. 6(b). For this image the method proposed
in [6] has resulted in an incorrect threshold value of 0.3255
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(a) (b) (c)

Fig. 8. Segmented images for the images in Fig. 5 where blue, red and green colors indicate the pixels corresponding to
background, RBCs and chromatin dots respectively.

(a) RBCs (b) Chromatin dots

Fig. 7. Initial segmentation of the image in Fig. 5(a)

Table 2. No. of pixels in each hue segment
Color Type Fig. 5(a) Fig. 5(b) Fig. 5(c)
red 39224 1326997 1351771
yellow 565 104424 35036
green 1356 292 51
cyan 253361 122 28
blue 717312 108 2232
magenta 435862 15737 58562

to segment RBCs. The adaptive threshold selection scheme
(Fig. 3(a)) has resulted in a threshold value of 0.0863 which
is found to be the right choice. Repeated experiments have
revealed that a saturation threshold value of 0.4 is optimal to
segment chromatin dots (Fig. 3(b)). The RBC and chromatin
dot images obtained after initial hue and saturation segmenta-
tion are shown in Fig. 7(a) and Fig. 7(b). However, these im-
ages contain noise and many artifacts which are eliminated to
a great extent by using the methods presented in Sec. 3. The
nal segmented images are shown in Fig. 8. Evaluation of the

scheme with 55 annotated images showed that the sensitivity
and speci city of the scheme are 83% and 98% respectively.

5. CONCLUSIONS

A method to segment RBCs and chromatin dots in images
taken from Lieshman-stained blood smears is presented. The
method operates in HSV space and is dynamic in the sense
that relevant thresholds are determined from the statistics of
the given image rather than keeping them xed for all im-
ages. The performance of the scheme was evaluated using

images with color variability. The background in an image
is determined using the dominant hue range. The remaining
pixels are processed to segment RBCs and chromatin dots.
Schemes are proposed to determine optimal saturation thresh-
olds to segment RBCs and chromatin dots that are robust with
respect to the color variability encountered. The work illus-
trates the potential of color image processing techniques in
providing diagnostic solutions to serious infections af icting
a signi cant portion of the world’s human population and are
being pursued for the development of low cost portable test-
ing kits.
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