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ABSTRACT

On normalized iris images, there are many kinds of noises,

such as eyelids, eyelashes, shadows or specular reflections,

that often occlude the true iris texture. If high recognition rate

is desired, those occluded areas must be estimated accurately

in order for them to be excluded during the matching stage.

In this paper, we propose a unified, probabilistic and learning-

based approach to estimate all kinds of occlusions within one

unified model. Experiments have shown that our method not

only estimates occlusion very accurately, but also does it with

high speed, which makes it useful for practical iris recognition

systems.

Index Terms— iris recognition, biometrics, iris mask, oc-

clusion estimation, Gaussian Mixture Models, FJ-GMM

1. INTRODUCTION

Iris recognition has been acknowledged as one of the most

accurate modalities in the biometrics field. Iris recognition

is powerful and highly accurate because it captures the ran-

domness in the meshwork of the connective tissue in the iris

region. However, during the time iris images are acquired,

irises are often partly occluded by other undesired objects, for

example, eyelids, eyelashes, shadows or specular reflections,

as shown in Fig. 1. In order to achieve a high recognition

rate, an iris mask has to be created to indicate which part of

the image contains authentic iris texture and which part of the

image is contaminated by other artifacts. If iris masks are

not accurate, the final recognition rate of the iris recognition

system will be poor.

As stated above, there are different kinds of noises, and all

of them should be masked out in order to achieve high recog-

nition performance. Because the image properties of different

kinds of noises are different, in the past, research has been fo-

cused on finding either eyelids or eyelashes. In this paper, we

would like to propose a unified approach which can deal with

all kinds of occlusions at the same time, by the same model,

and with high accuracy. This method will speed up iris occlu-

sion estimation and will be useful in practical systems.

We propose a probabilistic, learning-based approach that

can learn the distribution of the true iris texture from exam-

ples, and is able to estimate very accurate iris masks for un-

Fig. 1. Normalized iris image and its corresponding mask.

Note that there are many types of noises which contaminate

the iris texture, including (1) eyelids (2) eyelashes (3) spec-

ular reflections and (4) shadows, and all of them have to be

masked out.

seen data, all in a short period of time. Experiments have

shown the proposed method is powerful and can enhance the

overall iris recognition rate.

2. BACKGROUND

In [1], Daugman proposed an optimization scheme for finding

the spline parameters that best describe the eyelid boundary.

In his later work [2], he proposed a new method, which used

active contour (Snake) to find the boundary of the eyelids. On

the other hand, in [3], Zhang et al. proposed using Sobel edge

filters to detect eyelashes in the polar domain and removing

them with median filters.

In [4], Krichen et al. proposed a probabilistic approach

for iris quality measure. They compared the performance

of the Gaussian Mixture Model with Fourier-based methods,

wavelet-based methods and active contour based methods.

The iris masks estimated by their method seem to be lo-

cal patch-based, not pixel-based. In [5], Thornton proposed

to use a discriminative learning method based on FLDA to

estimate iris masks in the polar domain.
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3. PROPOSED METHOD

Let us review the problem of iris occlusion estimation from

a machine-learning perspective. The problem of estimating

a mask for an iris polar image can be treated as a two-class

classification problem. For each pixel on the iris polar image,

we should extract robust features that contain discriminative

information about whether this pixel belongs to the iris texture

or occlusion. We can then train a classifier by using some

training data and later use the trained classifier to perform

classification for unseen data.

We propose to use Gaussian mixture modeling (GMM) to

model the posterior probability distribution of both iris tex-

ture and occlusion classes. GMMs have been widely used in

all kinds of problems in machine learning and pattern recog-

nition, including speech processing [6], and real-time track-

ing [7]. The advantage of GMM is its modeling ability. As

long as the number of Gaussians is large enough, GMM can

virtually model any shape of distribution.

Traditionally one has to determine the number of GMM

used and also the initial location of GMM during training

process. We propose to use Figueiredo-Jain’s extension for

GMM (FJ-GMM) to automatically select the best parameters

for these two pre-conditions, and avoid GMM to converge to

local minima. The math of FJ-GMM is described briefly in

the following sub-sections.

3.1. Probability Density Function for GMM

Let us review the basic mathematical foundations for GMM.

The Gaussian distribution of a D dimensional random vari-

able X which has a value x is represented by (1)

X ∼ N (x; μ,Σ) =
1

(2π)
D
2 |Σ| 12

e[−
1
2 (x−μ)T Σ−1(x−μ)] (1)

where μ is the mean vector and Σ is the covariance matrix

of the Gaussian distributed random variable X .

The probability density function of GMM can be defined

as a weighted sum of multiple Gaussian distributions, as

shown in (2)

p(x; θ) =
C∑

c=1

αcN (x; μc; Σc) (2)

where αc is the priori probability that the random variable

X = x is generated by the cth Gaussian mixture. Based on

(1)-(2), the probability density function for a Gaussian mix-

ture model can be completely defined by a parameter list as

shown in (3)

θ = {α1, μ1, Σ1, ..., αC , μC , ΣC , } (3)

Given the observation X = x and the model θ, the likeli-

hood function can be defined as (4)

L(X; θ) =
N∏

n=1

p(x; θ) (4)

It tells the probability that the series of observation X =
x is generated by distribution governed by θ. The goal of

parameter estimation is to find the optimal parameter θ̂ that

maximize the probability:

θ̂ = arg max
θ

L(X; θ) (5)

Parameter estimation by (5) is called Maximum-Likelihood

Estimation (MLE). Sometimes maximum a posteriori (MAP)

estimation is used instead of MLE:

θ̂MAP = arg max {lnL(X; θ) + lnL(θ)} (6)

3.2. Figueiredo–Jain’s Extension for GMM Training

Figueiredo and Jain proposed an unsupervised learning

method for GMM in [8]. This method can estimate the

number of Gaussian mixtures without human intervention,

and can avoid the boundary of the parameter space during

the converging stage. FJ algorithm uses the idea of Minimum

Discriptive Length (MDL) and applies it to mixture model

training. It is equivalent to using the objective function in (7)

Λ(θ, X) =
V

2

∑
αc>0

ln
(

Nαc

12

)
+

Cnz

2
ln

N

12
(7)

+
Cnz (V + 1)

2
− lnL(X, θ)

where N is the number of training points, V is the number

of free parameters of the GMM, Cnz is the number of Gaus-

sian mixtures that have nonzero weight (αc > 0), θ is defined

as in (3), and the last term is log likelihood.

By using (7) as the new objective function, the formula

for estimating the prior distribution of the Gaussian mixture

in FJ algorithm becomes

αi+1
c =

max
{

0,
(∑N

n=1 wn,c

)
− V

2

}
∑C

j=1 max
{

0,
(∑N

n=1 wn,c

)
− V

2

} (8)

where wn,c is the probability that the nth observation is

generated from the cth Gaussian mixtureis, defined as

wn,c =
αi

cp
(
xn|c; θi

)
∑C

j=1 αi
cp (xn|c; θi)

(9)

The formula for estimating parameter μc and Σc is the

same as in the traditional EM algorithm:
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Fig. 2. Visualization of GMM trained on single iris texture. (a) Example image for training; (b) Iris mask of (a), created

manually; white region indicates occlusion and black region indicates true iris; (c) Iris image viewed in 3D, where z coordinate

is the pixel intensity value; green and red color denotes authentic iris texture and occluded area, respectively; (d) Visualization

of GMM trained from (a), plotted as red and green ellipses together with training points; (e)-(h) occlusion mask estimated by

GMM, rule-based method, FLDA-based method and Snake-based method, respectively.

μi+1
c =

∑N
n=1 xnwn,c∑N

n=1 wn,c

(10)

Σi+1
c =

∑N
n=1 wn,c

(
xn − μi+1

c

) (
xn − μi+1

c

)T

∑N
n=1 wn,c

(11)

We will not repeat too many details about FJ algorithm.

Interested readers should refer to [8].

4. EXPERIMENTS AND RESULTS

4.1. GMM Trained on Single Image

We first tried our proposed method on one single iris image

to see how the trained GMM fit with the training image. We

take image 245241.tiff from ICE2 database to be our training

sample. After manually segmenting the iris and performing

iris normalization, we get Fig. 2(a). We created manual mask

for it, and get Fig. 2(b). We can plot all points in Fig. 2(a)

in 3D, using pixel intensity as z coordinate, and get Fig. 2(c).

Applying FJ-GMM method to train GMM for those points,

we get Fig. 2(d). Finally, using Fig. 2(a) again as test data, an

iris mask can be estimated, as shown in Fig. 2(e). The result

showed that GMM trained with proposed method can fit both

distributions (authentic iris and occlusion) very well and can

reconstruct a highly accurate iris mask.

4.2. Automatic Mask Generation on ICE2 Dataset

We also performed a large-scale experiment on automatic

mask generation by proposed method, and compared the re-

sults with other methods. The database we used is a subset

Method No Mask Rule-based FLDA Snake FJ-GMM

Time(sec) 0 0.66 2.21 18.22 0.26

Table 1. The time it takes to estimate iris occlusion for one

image (of size 61x360)

of NIST ICE database, which is ICE2 database, as described

in [9]. The iris feature extraction and matching algorithm

we used in this experiment was Libor Masek’s Matlab im-

plementation of Daugman’s algorithm, which is publicly

available[10]. For the proposed algorithm, we take one im-

age from each class, manually create their masks, and train

two GMMs, one for authentic iris texture and the other for

all occlusions (eyelids, eyelashes, shadows and specular re-

flections). The features of points we used are: x-coordinate,

y-coordinate, pixel intensity, mean and standard deviation of

pixel intensity on a local 5x5 window. Therefore the number

of features per points is five. Since there are 120 classes,

and each image is of size 61x360, the total number of points

for training is 120x61x360=2,635,200. We test on all other

images which are not in the training set.

The methods we are comparing against include (1) No

mask at all; (2) Manually created mask; (3) Rule-based

method, similar to [11]; (4) FLDA-based method, as pro-

posed in [5]; (5) Active contour based method. The active

contour we used is GVF Snake [12]. The results are plotted

in the ROC curve and shown in Fig. 3. We also measured

the time each algorithm takes for estimating iris occlusion for

one image. They are listed in Table 1.

1359



Fig. 3. ROC curves for different masks

5. DISCUSSION AND CONCLUSION

From Fig. 3, we can see that the our proposed method

performs best, better than the rule-based and FLDA-based

method. Snake performs worst. This may be due to the fact

that Snake can only search the eyelids boundary, but there are

other artifacts which should be excluded during the match-

ing process, e.g. eyelashes, shadows, or specular reflections.

Also, our proposed method takes the least amount of time

among all methods, which makes it more useful in practical

systems.

We would like to point out that our method, although it

seems similar to [4] at first sight, is actually quite different

than their approach. There are three major differences. First,

their method only models the distribution of true irises, but

not on the occlusion; in our proposed method, we model both

and the decision is made by comparing the posterior probabil-

ity of both classes. Second, their feature is naive and simple,

the only observation (features of the points) is pixel intensity,

while our proposed method use more descriptive features (lo-

cation, pixel value, local mean and variance) to describe one

point. Third, their method is based on local patches, where

the whole local patch (size 11x51) has to be classified as a

true iris or occlusion; in our proposed method, each pixel is

treated as an individual observation and can be classified in-

dividually.

Our future work includes using responses from filters as

features and optimizing filters for feature extraction in order

to get best results. We would also like to try more complex

generative models such as Markov Random Field to see if

accuracy increases.
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