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ABSTRACT
In this paper we investigate a non-parametric classification of En-
glish phonemes in speaker-independent continuous speech. We em-
ploy the “voting” k-Nearest Neighbour (k-NN) classifier, a powerful
technique in pattern recognition problems, along with a new rep-
resentation of phonemes for the speech recognition task. We also
exploit the idea behind “approximate” k-NN that results in a very
fast way of computing the k approximate closest neighbours of each
data point. Comparing the recognition performance of the proposed
method with the HMM-based recognizer of HTK toolkit reveals that
the k-NN-based recognizer outperforms its counterpart. In addition,
incorporating the “approximate” nearest neighbour search instead of
the “exact” one results in completing the training step much faster
than the HMM-based system, and the testing step with a compara-
ble computational time. We also reduced the amount of the training
data by applying a pattern recognition technique, called “thinning”
algorithm. The outcome was a considerable reduction in the k-NN
search space and hence the execution time, and also a slight increase
in the recognition performance.

Index Terms— speech recognition, pattern classification, ap-
proximate index search

1. INTRODUCTION

Conventional speech recognition systems are usually parametric.
This means that speech recognition is performed by evaluating input
speech samples against an abstraction like a function or a density dis-
tribution that models the training data. In parametric speech recog-
nition processing, computational burdens are reduced and speech
recognition calculations become more manageable. However, there
is a wide degree of variability in the way a given word can be pro-
nounced. Mostly, two acoustic realizations of the same word, or
even the same sound, are not identical. Moreover, speech from dif-
ferent speakers can be very different, since speakers differ in their
vocal tract length or shape of the articulators, as well as in their
speech style (e.g., speaking rate) and regional dialect [9]. In speaker-
independent speech recognition systems, the speech models have to
accommodate all this variability. Therefore, fuzzy, or poorly defined,
word models can be produced which in turn results in recognition er-
rors during the decoding procedure. This fuzziness can also exist in
speaker-dependent speech models but in a lesser degree due to the
inherent variability of the speech models and of the speech itself.
Using the statistical models represents a potential loss of the infor-
mation in the recognition process. Those details that are present in
individual data samples are sacrificed in order to pool information
in a controlled fashion [7]. On the contrary, in a non-parametric
speech recognition process, different training observations are not
blended into one model. Indeed fine phonetic details of the actual
utterances rather than statistical approximations can be used dur-
ing comparison of the input sample against training observations,
and accordingly in the recognition process. Incorporating this extra

information has the potential to produce more accurate recognition
results. As a result, in pattern classification problems, a debate is
going on between storing the individual data samples (utterances for
speech recognition) and deriving an abstract representation from the
training material. A similar debate also exists in the psychological
literature related to the human memory [13] (and to Human Speech
Recognition (HSR) [3]). Researchers are attracted to the concept
of “episodic memory”, and there is some evidence that individual
memory “traces” are stored. A few researchers have already realized
the potential relevance of this topic to Automatic Speech Recogni-
tion (ASR), and some work is moving in the direction of at least
incorporating non-parametric approaches (e.g., Template-based) in
the parametric ones (HMM-based) for large-vocabulary continuous
speech recognition (LVCSR) [11].

2. K-NEAREST NEIGHBOUR CLASSIFICATION

In the parametric density estimation approach, a parametric proba-
bility distribution is chosen to fit the data, and the parameters of this
distribution are estimated in such a way to provide the best fit accord-
ing to some defined criteria. Generally, the choice of the distribution
is based on the prior knowledge about the data (very often based on
the central limit theorem; this explains the popularity of the normal
distribution), on goodness-of-fit criteria, and sometimes on the belief
that the distribution is flexible enough and is able to model any real
data distribution accurately. The Gaussian Mixture Model (GMM),
which is the most popular choice in HMM-based speech recogni-
tion, is of the last category. However, in non-parametric approaches
the density estimate is calculated based only on the genuine char-
acteristics of the data, generally according to the information that
is derived from the close neighbourhood of the query point itself.
In fact, the common practice in HMM-based speech recognizers,
which is using a large number of mixtures per distribution, makes
the nonparametric approaches more reasonable than the parametric
ones for the speech recognition purposes. We intend to apply a non-
parametric classification approach and perform context-independent
phoneme recognition. One of the most well known such classifiers is
the k-nearest neighbour (k-NN). In the “voting” k-nearest neighbour
classification, we classify an unknown sample to the majority vote
between the class labels of its k closest neighbours in the training
dataset. This is a very powerful rule due to the fact that, for large
enough training datasets, the error rate is upper bounded by twice
the Bayes error rate (optimal error rate). It has also been shown that
the gap between its error rate and the optimal Bayes error is directly
linked to the value of k, assuming that a large enough training dataset
is available [1], [2]. This is an important advantage compared to the
continuous estimates such as the Gaussian mixtures. For the contin-
uous estimates, we rely on the assumption that their basic functions
are consistent with the true data distribution, but the acoustic vectors
generally do not follow Gaussian distributions [8]. In addition, al-
though obtaining a Gaussian mixture density with densities that are
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arbitrarily close to the true distribution is theoretically “possible”,
the theory does not illustrate how we should produce this mixture.
For instance, the number of mixtures and the training of the weights
in the GMM is actually guided by heuristics, and there is no proof
showing the convergence of the distribution model towards the true
distribution. As a result, the k-NN probability estimate [1] might
be able to offer a convincing alternative to the continuous estimates.
The k-NN probability estimate is used in the “volumetric” k-NN
classification formula [1]. In this paper we use a similar version
of this classifier, called “voting” k-NN, which is already described
above.

3. FEATURE EXTRACTION

For accomplishing any recognition procedure, the first step is fea-
ture extraction, which provides a reasonable representation of the
speech data. The features we extract from speech utterances are the
well known Mel Frequency Cepstral Coefficients (MFCCs). We ap-
ply the same method in the feature extraction section of the HTK
toolkit and compute 14 dimensional MFCC features for frames of
20 msec of speech. In conventional HMM-based speech recogniz-
ers, the recognition procedure is repeated for each frame of speech
separately, therefore each frame has a representation of usually 42
dimensions that includes MFCCs, delta, and delta delta coefficients.
In our approach, we assume that phoneme boundaries are available
for the train and the test datasets (these boundaries are already given
in the TIMIT database), and divide the duration of each phoneme
into three sections. We average the MFCC coefficients of the frames
in each part, and generate a 42 dimensional feature vector for each
phoneme by concatenating the MFCC coefficients of these three sec-
tions. In this way we are able to include time-dependent information
of each phoneme in its representing vector as well. As was described
before, in the typical non-parametric approach to classification in
instance-based learning, training data is collected and used to design
a classifier. In the k-NN classification approach, the training data
acts as a feature space in which we evaluate the unknown test sam-
ples and seek their nearest neighbours. Since we are planning to use
Euclidean distance in this feature space, we need to standardize the
training data. Otherwise, if one input has a large mean and variance
and another a small one, the latter will have little or no influence on
the result. Since standardizing the data usually leads to losing some
information, sometimes little help might be achieved from this act.
In our recognition procedure, we noticed that subtracting the mean
for MFCCs enhances the recognition performance while dividing by
the standard deviation worsens the performance; therefore, we limit
the standardization of the data to subtracting the mean. One other
option would be fully standardizing the data and then incorporating
some weighting scheme for the features.

4. PHONEME RECOGNITION

In the past the nearest neighbour classification has been unfairly crit-
icized by some mistaken assumptions. For instance, it has been be-
lieved that one must store all the data for implementing this rule,
or moreover, for classifying an unknown sample, one has to com-
pute the distances between the unknown vector and all members of
the training dataset. In fact, these assumptions are not correct and
computational geometric progress and faster and cheaper hardware
revealed that the k-nearest neighbour rule can be easily practiced in
for pattern recognition applications [10]. Due to the fact that for
many practical pattern recognition problems, the data rarely has a
specific underlying distribution, the exact techniques developed for
nearest neighbour search do not improve over sequential search sub-

stantially. Therefore, recent research is looking for powerful “ap-
proximate” techniques for nearest neighbour search. In order to
compute k nearest neighbours of each point in the feature space,
we use the algorithm, “approximate multi dimensional index struc-
tures” that was proposed by Houle [5]. The previous work in nearest
neighbor search algorithms was mostly based on the more traditional
tree-based index structure schemes. The main idea of these tree-
based schemes was assigning items to the subtree of their nearest
node from a limited set of candidates. However, occasionally this
process leads to having some nodes whose nearest neighbors can be
reached only via very long paths. For more details see Houle [5].
The data structure proposed by Houle counters this problem by al-
lowing multiple paths between the nodes. Unlike a tree-based struc-
ture, this structure lets nodes have multiple parents. This results in
having very few nodes whose nearest neighbours are reachable only
through long paths. Therefore, one obtains a more compact search
space by applying this algorithm. During the search, approximate
nearest neighbors are located recursively within a large sample of
the data and the links from these sample neighbours are followed
to discover approximate neighbours within the remainder of the set.

Using the feature extraction algorithm described in the the previ-

Table 1. The percentage of correctly recognized phonemes of the
TIMIT test database for the HMM-based, and the k-NN recognition,
approaches.

HMM-based k-NN-based

Correct(%) 56.03 61.1

Training execution time (s) 1925 102
Testing execution time(s) 165 400
Total execution time(s) 2090 502

ous section, the features representing each phoneme in the training
and test datasets are computed in 42 dimensions. Then, employing
the search algorithm proposed by Houle we build the SASH (Spa-
tial Approximation Sample Hierarchy) [5] from the feature vectors
of the training dataset. This step can be equivalent to the training
step in an HMM-based recognition system. However, compared to
the training part of the HMM-based approach, the construction of
the SASH is very fast. This can be seen in the timing informa-
tion provided in Table 1. For the testing section, we search for the
k “approximate” nearest neighbours of each test sample, applying
the search algorithm designed by Houle on the SASH, which is al-
ready built in the training section. We choose the class (phoneme
type) with the highest number of members among the k nearest
neighbours of the test point as the recognized value for the test
point. The data we used for the recognition process is composed
of the training and the test parts of the TIMIT database. The num-
ber of phonemes in the training dataset was around 150000 and the
amount of the test phonemes was around 54000. We also decrease
the number of phoneme classes in use in the TIMIT database to 41
phonemes, by merging the silences of the stops into the stops and
deleting some phonemes that are not commonly used in the recog-
nition tasks. In order to compare the proposed k-NN recognition
approach with the conventional HMM-based approach, we use the
HTK toolkit and perform an HMM-based recognition with MFCC
features on the TIMIT database. For this purpose the number of
mixtures is put to 5 and 42 dimensional feature vectors are used, in-
cluding the delta and accelerating coefficients. We also supplied the
recognizer with the phoneme boundaries both during training and
test processes to maintain equivalent information with the k-NN ap-
proach. We do not include any context-dependent information such
as biphone, or triphone models, or any language model in both the
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Fig. 1. The correctness (%) vs. the value of “k” in the k-NN-based
approach.

HMM-based, and k-NN-based, recognition procedures. The perfor-
mance is evaluated by the percentage of correctness. This value is
computed as the number of correctly classified phonemes in the test
dataset divided by the total number of phonemes. Table 1 shows
the performance of both the k-NN-based and the HMM-based rec-
ognizers. As can be seen, the k-NN-based recognizer outperforms
the HMM-based system. As is known, HTK uses Gaussian mix-
tures for modeling the phonemes, and it has been claimed that using
only the distance between the test sample and the training data is
too simplifying, but the result clearly contradicts this belief. Ta-
ble 1 also shows the average execution time over each run of the
training and test steps for both recognition systems in C++ v4.1.1
and under Linux Fedora with a single 3.2 GHz Pentium IV. The
results show that surprisingly, using the “approximate” version of
the nearest neighbor search, and also processing phonemes rather
than 20 ms frames of speech signal (which is applied in HMM-
based recognizers), both the training and the testing steps for the
k-NN-based recognizer are completed much faster compared to the
HTK toolkit using the same processing machine. There are some re-
sults on phoneme classification using the TIMIT database, in which
phoneme boundaries have been used. For example, Young used 48
context-independent models, and achieved 61.7% correctness, for
a test sequence of 160 sentences randomly taken from the train-
ing sequence, [6]. Chengalvarayan achieved 65.66% correctness for
a proposed time-varying discriminative training technique effective
for phonetic discrimination for 39 context-independent models and
5 Gaussian mixtures, [6]. Wachter [11] also examined the k-NN
classifier on the TIMIT database, but he performed “frame” clas-
sification, and he reported 63.5% using the Euclidean distance as
the distance measure and no pre-processing of the data (similar con-
ditions to our approach). Our method has comparable results with
these Benchmark HMM methods, and in addition it is very fast. For
the k-NN classification task, one should choose a proper value for k
according to the nature of data being in use. For this purpose, dif-
ferent values of k ranging from 1 to 50 are examined, and the result
is depicted in Figure 1 . As it is seen, the values of k between 15 to
20 are the optimum choices for the clean speech signal of the TIMIT
database.

5. THINNING THE TRAINING DATASET

Since in the k-NN classification the training data should be used for
the classification task, even if we incorporate sophisticated search
algorithms, there is still a vast search space in relatively high dimen-
sions. As a result, many researchers proposed methods that reduce
the amount of the training data without sacrificing the performance,
and therefore storing and processing as little of the training data
as possible. These methods are called “thinning” or “condensing”

methods in the pattern recognition literature, [4]. The condensing
method that we use is the k-NN version of the thinning procedure:

1. Compute the k nearest neighbours of each point in the train-
ing dataset.

2. Mark those points that all their k nearest neighbours are not
from the same class as the point itself.

3. Delete the marked points.

(a) (b)

Fig. 2. (a) The amount of data reduction (%) vs. the value of “k”
when applying the thinning algorithm. (b) The percentage of cor-
rectness vs. the value of k after applying the thinning algorithm.

The idea behind this algorithm is very intuitive and simple. Basi-
cally, those points in the training dataset that are mostly surrounded
by the members of their own class, and are far from the boundaries
between classes, are removed. This method of decreasing the num-
ber of points in the training dataset does not reduce the performance
of the system since the omitted points are usually located far from
the boundaries between classes, and therefore do not have crucial
roles in the k-NN classification decisions. We apply this algorithm
on the original training dataset before using it for the classification
of the unknown test phonemes. Clearly, the amount of reduction of
the training dataset depends on the chosen value for k. For instance,
if k is large, we will have a small number of deletions since there
will be a very limited number of points for which a large number of
neighbors are from the same class as the point itself. As the value
of k decreases, more points are omitted in the process of thinning
and this might affect the classification performance. We apply the
thinning algorithm with different values of k and achieve the results
displayed in Figure 2. The best value for k is 10, which reduces
the training dataset by 13.7%. Surprisingly, the performance of our
recognition algorithm increases slightly to 61.6% when we apply the
thinning algorithm with k = 10 on the training dataset. This can be
due to the fact that this process helps to reduce the effect of the bias
induced by more populated classes while it preserves the decision
boundaries between classes.

6. CONFUSION MATRIX

For demonstrating the performance of a speech recognizer, usually
measures like the “percentage of correctness” or the “accuracy” are
taken into account. Although these measures supply the user with
a reasonable impression about the performance of the recognizer,
they are quite general and provide little information about how the
recognizer acts for different phonemes with various intrinsic char-
acteristics, and consequently give little insight about the potential
ways of improving the recognizer’s performance. In order to com-
pare the behaviour of the k-NN-based and the HMM-based recog-
nizers more deeply, we decided to compare their confusion matri-
ces. The differences between the two confusion matrices are quite
interesting. In the HMM-based system, the recognition errors for
a specific phoneme usually spread over all phonemes with differ-
ent degrees, while for the k-NN case we have spike-like errors for
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(a) (b)

(c) (d)

Fig. 3. (a) The confusion in the recognition of phoneme “s” using
the HMM-based approach. (b) The confusion in the recognition of
phoneme “s” using the k-NN-based approach. (c) The recognition
errors of phoneme “s” using the HMM-based approach. (d) The
recognition errors of phoneme “s” using the k-NN-based approach.

some phonemes and usually zero confusion for the others. Figure 3
shows the recognition errors for phoneme “s” in the HMM-based
and the k-NN-based approaches. The amount of correctly recog-
nized “s”’s are also displayed for both systems in this figure. We can
interpret the above occurrence as follows. For the k-NN classifier,
those classes that are close neighbours of a particular class (here,
“s”) and share main decision boundaries with it, produce the spike-
like confusions, and the rest of the classes are hardly confused with
the expected one. For the HMM-based system, the acoustic model
that represents a particular phoneme can produce the same log like-
lihood for other phonemes due to the general parametric model in
use (GMM). We observe one shortage of the k-NN-based approach.
Although the population of each phoneme in the training dataset rep-
resents the prior probability of that phoneme and considering it dur-
ing the recognition task improves the performance, inspecting the
confusion matrix for this approach reveals that the phoneme classes
that have a very high population (e.g., “n” with around 8100 mem-
bers) in comparison with their neighbouring classes (i.e., those with
relatively low populations) (e.g., “ng” with around 1300 members)
bias the recognition result towards themselves. Since this situation
occurs only for classes with very low prior probabilities, the recog-
nition performance still remains better than the HMM-based system.
In order to lessen such an effect, one possibility can be applying the
weighted k-NN classification, with weights inversely proportional to
the population of each class, or related to the distance of the query
point to its neighbours, having higher weights for the close neigh-
bours than those further away. We plan to apply these methods in
the future to overcome the described shortage of the k-NN-based
system.

7. CONCLUSION

Although template-based speech recognition is still in its early
stages, in comparison to the widely used conventional algorithms
like HMM-GMM-based speech recognition, the results achieved in
this direction by various researchers are quite promising. This can
be due to its inherent similarities with the human speech recognition,
and also to the high variability of the speech data that can hardly be

modeled accurately enough using the parametric estimates. There-
fore, we were encouraged to step in this direction, and propose a
new method that employs a powerful and intuitive non-parametric
classifier, voting k-NN, a very fast approximate search approach, a
new representation of phonemes, and finally a thinning algorithm
for reducing the training dataset. The recognition result shows a
promising increase in the percentage of correctness over the conven-
tional HMM-based phoneme recognition. In addition, applying the
approximate nearest neighbour approach for the classification pur-
pose rather than the exact one leads to achieving a very lower train-
ing execution time compared to the HMM-based system, and also
a comparable execution time for the testing. In the future, we plan
to overcome the shortages of this approach, and devise a method of
integrating it in conventional methods of speech recognition.
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