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ABSTRACT 

This paper considers the problem of target location 
estimation in a wireless sensor network based on IEEE 
802.15.4 radio signals and proposes a novel implementation 
of the maximum likelihood (ML) location estimator based 
on the Cross-Entropy (CE) method. In the proposed CE 
method, the ML criterion is translated into a stochastic 
approximation problem which can be solved effectively. 
Simulation results comparing the performance of a ML 
target estimation scheme employing the conventional 
Newton method and the conjugate gradient method are 
presented. The simulation results show that the proposed CE 
method provides higher location estimation accuracy 
throughout the sensor field1 
 

Index Terms—target location estimation, wireless 
sensor network, IEEE 802.15.4, maximum likelihood 
method, Cross-Entropy method 

1. INTRODUCTION 
 
The rapid development in the manufacturing of micro-
electrical-machine systems and wireless communications 
has produced inexpensive tiny sensors with low cost and 
low power consumption. These sensors have detection 
capabilities in wireless communications systems and data 
processing. A network in which many wireless sensors are 
deployed and interconnected in a particular region is 
referred to as a wireless sensor network (WSN) [1]. One of 
the important tasks that WSNs need to perform is target 
location estimation because many important WSN 
applications require accurate target location and target 
tracking.  

Generally speaking, the information used to estimate a 
target location is based on the measurement data of the 
time-of-arrival, time-difference-of-arrival, angle-of-arrival, 
and received signal strength (RSS) [2] gathered from a 
known station or sensor node. However, in this paper we 
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focus on the location estimation method using RSS. We do 
so because the RSS can be measured using the IEEE 
802.15.4 standard [3] that expects devices and other 
components to be developed in support of the realization of 
WSNs based on this specification. Consequently, location 
estimation with RSS is considered to be suitable for location 
estimation by WSNs. In addition, we also consider the 
probabilistic model which is based on the probability 
distribution function (pdf) that describes the wireless 
propagation characteristics in a real environment of 
observed RSSs. Once the pdfs of observed RSSs are 
available, the maximum likelihood (ML) method can be 
used for target location estimations.  

Mathematically, the ML method used to solve the 
location estimation problem involves minimizing the 
negative of a highly complex multimodal log-likelihood 
function. Thus, traditional deterministic optimization 
algorithms are suitable for obtaining the ML solution. 
However, traditional deterministic optimization algorithms 
such as the Newton method [4] sometimes become stuck in 
the local minima because of their lack of a good initial 
guess, and no global convergence is guaranteed, in general. 
In this paper, we consider a WSN based on IEEE 802.15.4 
radio signals and propose a novel implementation of the ML 
location estimator based on the Cross-Entropy (CE) method 
[5]. In the proposed CE method, the ML criterion is 
translated into a stochastic approximation problem which 
can be solved effectively. The simulation results show that 
the performance of the proposed CE method can provide 
higher location estimation accuracy throughout the sensor 
field comparing to the conventional methods. 
 

2. SYSTEM MODEL AND PROBLEM DEFINITION 
 
In this paper, we focus on the location estimation method 
based on the RSS of IEEE 802.15.4 radio signals. Since the 
RSS decreases according to the distance, denoted by r, 
between the transmitter and receiver, the distance decays of 
the average RSS, denoted by P , is usually characterized as 
being inversely proportional to pnr   and can be expressed as 

pnP C r  ,                                      (1) 
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where pn  is the path-loss exponent that depends on the 
propagation environment, and C is a constant that depends 
on the transmission power, the antenna characteristics, the 
average channel attenuation, and so on. It is known that the 
effect of wireless propagation characteristics on the RSS 
can be modeled by means of a probability distribution. That 
is, the wireless propagation model can be represented as a 
mathematical model that predicts some properties of a radio 
signal at a given location. Based on the experimental results 
in [6], the pdf of the RSS against the distance for IEEE 
802.15.4 radio signals in an indoor environment can be 
approximated well by an exponential distribution. Therefore, 
the conditional pdf  p P r  of the RSS P when r is given 

can be expressed by  
1 exp Pp P r
P P

 ,                              (2) 

where P  is the average RSS, expressed as (1). 
After each sensor node measures the RSSs for a target 

node, all the information on the RSSs is sent to a data 
collection center. Given iP   (i is the sensor node index) as 
the available RSS measurement data in the data collection 
center, the problem in hand now is how to accurately 
estimate a target’s location (x,y) based on these 
measurement data. We assume that 1) the radio propagation 
channel among different target-sensor pairs are independent, 
2) the pdf of the received power Pi with respect to the 
distance ri from the transmitting node is modeled as an 
exponential distribution, and 3) there are N sensor nodes in 
the sensor field where the sensor nodes are supposed to 
exist. Hence, depending on the exact location of a target, the 
joint pdf for the RSS P1, P2, …, PN can be expressed as 

1 2 1 2
1 1

, ,..., , ,...,
N N

N N i i i
i i

p P P P r r r p P r p P ,      (3) 

where  

                                  2 2
i i ir x X y Y                   

(4) 
is the distance between the unknown coordinate location of 
the target node,  x y , and the known coordinate 

location of the sensor node i, ,i iX Y , and i ip P r  is 

given by (2), with P and r replaced by Pi and ri, respectively. 
If we take the logarithm of (3), the log likelihood function 
of (3) is 

 
1 1

log log
N N

i i
i i

L p P p P .                (5) 

To derive a ML solution to (5), we differentiate (5) with 
respect to x and y and equate them to zero, 

1 1

log 0; log 0
N N

i i
i i

L Lp P p P
x x y y

.   (6) 

It is obvious that (6) is a system of non-linear equations. 
Instead of solving (6) directly, in the next section we 
propose a novel implementation for ML function in (5) 
based on the CE method. 

 
3. THE CROSS-ENTROPY METHOD AND ITS 

APPLICATION TO ML LOCATION ESTIMATION 
 
The CE method was first proposed by Rubinstein [5] to 
solve rare event estimation problems and was soon 
successfully applied to solving both combinatorial and 
continuous optimization problems. The CE method is a 
general algorithm for solving global optimization tasks of 
the form 

arg max S  ,                                (7) 

that is, we wish to maximize the score function S  over 
all  in set  . Instead of maintaining a simple solution 
candidate  t  in each time step for the conventional 
optimization algorithms, the main idea of the CE method is 
to maintain a distribution of possible solutions, and 
adaptively update this distribution according to the 
Kullback–Leibler distance, i.e., cross entropy, between the 
associated density and the optimal important sampling 
density. By doing so, one constructs a random sequence of 
solutions which converges (probabilistically) to the optimal 
or, at least, a reasonable solution. In short, the CE method 
involves the following two iterative phases: 1) Generate 
random samples in  according to a specified sampling 
distribution generated from the previous iteration. 2) Update 
the parameters on the basis of the best scoring samples in 
order to produce better scoring samples in the next iteration. 
For a concrete understanding of the CE method, the reader 
is referred to [5].  

    In the ML location estimation problem, we are 
interested in maximizing the log-likelihood function, 
expressed in (5), over the set  of all potential  such that 

 
1

arg max arg max log
N

i
i

L p P .              (8) 

The CE method is an adaptive importance sampling method 
that transforms the deterministic optimization problem (8) 
into a family of stochastic sampling problems. Hence, the 
first step in using the CE method is to randomize our 
original deterministic problem (8) by including a set of 
sampling distribution over deterministic . In this paper, 
we take the sampling distribution to be a Gaussian 
distribution ,N a b  , where a and b are the mean and 
variance, respectively. It is important to emphasize that the 
sampling distribution can be quite arbitrary and does not 
need to be related to the function that is being optimized. 
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The reason we adopt the Gaussian distribution is that it 
gives formulas that are easy to update  

At each iteration t of the algorithm, a collection of N 

random samples 
2

1 1

N
t

i i n
n  is obtained from a 

Gaussian distribution, i.e., ,t t t
i i in N a b , where 

t
i n  denotes the ith element of the sample n at iteration t, 

and t
ia  and t

ib  denote the mean and the variance of the ith 
element at iteration t, respectively. Next, with the N samples, 

we can derive a set of performance values 
1

Nt

n
L n  

using the score function L  expressed in (5). After 
sorting the performance values from the smallest to the 
largest, 1 NL L , then new values t

ia and t
ib  are 

then updated based on the eliteN N   best performance 
samples, the elite samples, where  denotes the fraction of 

the best samples and N  is the integer part of N . Let 

 be the indices of the eliteN  best performance samples. 

Then t
ia  and t

ib  can be updated via 

                           elitet t
i i

n
a n N                        (9) 

and 

 
2

elitet t t
i i i

n
b n a N ,                 (10) 

respectively. That is, we update t
ia  and t

ib  as the mean 
and variance of the elite samples. In addition, instead of 
using t

ia  and t
ib  as the updated parameters, it is 

beneficial to add in a smoothing procedure for each iteration 
t as  
                              11t t t

i i ia a a                     (11) 
and 

   11t t t
i i ib b b ,                      (12) 

where  is the smoothing parameter, with 0 1 . It is 
obvious that for 1  we have the original updating rule. 
The main algorithm is summarized as follows: 
Algorithm: CE Algorithm for the ML Location Estimation 
Problem 

1. Initialize 0
ia  and 0

ib  . Set t = 1. 

2. Use the density 1 1,t t
i iN a b  to generate a 

random sample 
2

1 1

N
t

i i n
n .

3. Calculate the score function according to (5) to get 

a set of performance values 
1

Nt

n
L n .

4. Order the performance values from the smallest to 
the biggest, and select the best eliteN  elite performance 
values according to predetermined quantile parameter .

5. Calculate the sample mean and sample variance of 
the elite samples according to (9) and (10), respectively.  

6. Update the mean and variance of the elite samples 
in a smooth way, as in (11) and (12), respectively. 
7. Repeat step 2 to step 6 for t = t +1 until the 
stopping criterion is met. 
 

 
Fig. 1 Simulation scenario, where  represents the location 
of a sensor node. 
 

4. NUMERICAL RESULTS 
 

Computer simulations are discussed in this section. For 
comparison, we also test four existing algorithms: 1) 
Newton’s method (NT) [5] for solving (6); 2) the NT 
method with true target location (NTT) for solving (6); NTT 
is identical to the NT method except that it uses the true 
target location, not a random coordinate vector, as its initial 
guess; 3) the conjugate gradient method (CG) [5], which is 
an iterative optimization method used to solve the ML 
criterion in (5); and 4) the CG method with true target 
location (CGT), which is identical to the CG method, except 
that it uses the true target location, not a random coordinate 
vector, as its initial guess. The statistical model given by (1) 
contains two parameters used for advance estimation, that is, 
path-loss exponent pn   and constant C. In this paper, we 

assume that the path-loss exponent pn  and constant C are 

perfectly estimated. Here, pn  = 3.51 and C = 0.0000141 [7]. 
The simulation scenario is depicted in Fig. 1. Regarding the 
parameters used in the proposed CE algorithm, 0

ia  is 

randomly chosen over [0,100] m, 0
ib  is 10000, the 

smoothing parameter  is 0.8, elite 10N , 100N , and 
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the algorithm is stopped when the iteration number exceeds 
100.  

 
Fig. 2 Example of location estimation.  represents the 
location of a sensor node,  represents the true location of 
the target,  represents the estimated location of the target, 
respectively. 

In our simulation, we randomly generate the x position 
and y position of the target node over [-2,2] (m) and 
compare the proposed method with the conventional 
methods with respect to the number of sensors. The sensor 
nodes that estimate a target location in this simulation are 
assumed to be those that receive the largest signal strength 
transmitted from the target node. Fig. 2 shows an example 
of location estimation result with 16 sensor nodes. Fig. 3 
shows the root mean square error (RMSE) versus the 
number of sensor nodes for five algorithms with different 
sensor nodes. The location estimation is performed over 
10,000 Monte Carlo trials. The maximum iteration number 
for the conventional NT method, the NTT method, the CG 
method, and the CGT method are 10,000, and these 
algorithms will be stopped when the iteration number 
exceeds 10,000. If the iteration number of above methods 
reaches the maximum iteration number, the algorithm is 
regarded as “divergence”. From Fig. 3, we observe that 1) 
as expected, the RMSE decreases when the number of 
sensors increases; 2) a good initial guess definitely 
improves the performance of the conventional NT method 
and CG method, but it should be noted that the proposed CE 
method is independent of the initial guess; 3) the proposed 
CE method always outperform the other conventional 
methods, even though some of them use the true target 
location as their initial approximation to start their algorithm.  

Finally, since the five compared algorithms are iterative 
algorithms, convergence is an important issue that needs to 
be discussed. The divergence probabilities for the NT 
method, the NTT method, the CG method, and the CGT 
method are 2.78%, 0.07%, 1.05%, and 1.01%, respectively. 
On the other hand, the proposed CE algorithm is stopped 

when the iteration number exceeds 100. We can see from 
Fig. 3 that the performance of the proposed CE algorithm 
always converges to the optimal or, at least, a reasonable 
solution. 
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Fig. 3 Root mean square error (RMSE) versus number of 
sensor nodes. 

5. CONCLUSION 
 
This paper presented a CE-based method that performs ML 
location estimation based on IEEE 802.15.4 radio signals in 
WSNs. The performance of the CE algorithm was studied 
using computer simulations. Compared with the 
conventional Newton method and the conjugate gradient 
method, the proposed CE method provides higher location 
estimation accuracy throughout the sensor field. 
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