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ABSTRACT
In this paper, we present a SNR-adaptive soft mask filter
for multi-channel noisy speech enhancement. Incorporat-
ing frame-by-frame spectral magnitude ratios into the time-
frequency(T-F) mask filter framework, the adaptive filter can
be designed robust to changing environments. Experimental
results show that the proposed adaptive mask filter can ef-
fectively suppress non-stationary noise components even in
a closely-spaced microphone pair. Moreover, the soft mask
compressed with sigmoidal nonlinearity can reduce musical
noises so that improved PESQ values are obtained.

Index Terms— time-frequency masking, adaptive soft
mask, local SNR, speech enhancement

1. INTRODUCTION

Recently, the sparseness of sound mixture received much
attention as a priori knowledge to separate sources where
sufficient information about mixtures is not given[1, 3]. In
particular, binary time-frequency(T-F) masking is a well-
known technique to achieve the goal of computational au-
ditory scene analysis(CASA) and has widespread applica-
tions such as speech separation, enhancement and automatic
speech recognition[5, 6]. Moreover, in the missing data
technique, also known as emerging issues in the fields of
robust speech recognition, a mask filter gives reliability of
each T-F elements so that only reliable region can contribute
to the estimation of recognition score[4, 7]. The binary T-
F masking can perfectly extract target sources from noisy
under-determined mixtures if sources do not overlap in the
time-frequency domain. This assumption works well in prac-
tical sound mixtures[1].

One of the key problems in T-F masking is to construct
a reliable T-F mask from noisy mixtures. The binary mask
typically suffers from musical noises due to its discontinu-
ity among each T-F unit. A variety of techniques have been
derived to mitigate this problem. For example, sigmoidal
nonlinearity is introduced to have continuous values ranging
from 0 to 1 in the soft decision-based fuzzy SNR mask[3,
4, 7]. Aarabi proposed phase-error based T-F mask filter and

showed improvements of both SNR and recognition rates over
noisy mixture signals[2]. Phase-errors calculated from each
T-F block are compressed to take values in [0, 1] and used
for scaling factors in order to maintain spectral structure of
speech source of interest and to suppress interfering noises
coming from different directions.

In this paper, we present a SNR-adaptive soft mask fil-
ter to extract target speech from noisy mixtures. Mask fil-
ter parameters are not fixed but dependent on frame-by-frame
spectral magnitude ratios, which are capable of coping with
various mixture SNRs and noise types.

2. SNR-ADAPTIVE SOFT TIME-FREQUENCY
MASK FILTER

To deal with the multi-channel speech enhancement, we start
with the adaptive beamforming algorithm called generalized
sidelobe canceller(GSC), developed by Griffiths and Jim[9].
The GSC consists of three components; fixed beamformer,
blocking matrix, and adaptive noise canceller(ANC). The
GSC showed good performance for enhancing signal of inter-
est while suppressing interfering noises with low complexity.
However, if noise-reference signal produced by blocking ma-
trix contains target signal leakage, ANC may take the risk
of suppressing target signal as well as noise signals. So the
performance of GSC cannot be guaranteed. This problem
often occurs where multi-channel microphones are closely
spaced or direction of arrival(DOA) is mismatched, since
input signals are highly correlated with each other[8, 9].

To overcome this difficulty, hybrid of beamformer and
adaptive soft mask filter is proposed as Fig.1. In this paper, we
used a adaptive mask filter as an alternative to ANC. We con-
sider multi-channel input signals as X1(t), X2(t), ..., XN (t).
Noisy inputs are processed with beamformer and followed
by mask filter. The beamformer block generates primary and
secondary signals which represent target-dominant signal and
target-nulling signal, respectively.

For simplicity, we assume that both target-enhancing
beamformer and target-rejecting beamformer are composed
of delay-and-sum beamformer in which their filter weights are
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Fig. 1. Block diagram of multi-channel adaptive soft mask
filter structure

[1, 1, . . . , 1]/N ,[1,−1, . . . , 1,−1], respectively. In this case,
target speech is assumed to input as broadside direction to the
microphone array. The target-enhancing beamformer gener-
ates primary output signal, Y (t), which contains speech-
dominant signal. Also, the target-rejecting beamformer
outputs noise-dominant signal, Z(t). However, instead of
beamformers, other separation algorithms such as indepen-
dent component analysis and target cancelling module may
be used for generating primary and secondary signals[3, 6].

After converting time-domain signals into spectral do-
main spectrums via STFT(short-time Fourier transform), we
define local SNR in each T-F unit as

SNRTF (τ, k) =
|Y (τ, k)|

|Z(τ, k)| + ε
(1)

where τ and k is a frame and frequency index, respectively.
|Y (τ, k)| and |Z(τ, k)| is a magnitude of complex spectrum of
target-dominant signal and target-nulling signal, respectively.
ε is a flooring term to overcome the divide-by-zero overflow.

The local SNR itself indicates reliability of each T-F unit,
that is, a T-F unit with high SNR may come from target-
dominant signal, while lower SNR unit come from interfer-
ing noises. Therefore, an appropriate thresholding parame-
ter can determine whether corresponding T-F unit belongs to
the target-dominant signal or not. Hence if we compress lo-
cal SNR to take one of 0 or 1 value, a binary mask filter
may be formed. The mask filter multiplied with dominant
speech gives further enhanced target signal. However, the
thresholding-based mask filter design discloses two problems.
One is popular musical noises which originate from abrupt
discontinuity among T-F units. The other is heuristically de-
termined thresholding parameter, which does not cope with
changing environments.

Therefore, we introduced a nonlinear sigmoid function to
generate a soft T-F mask filter and adaptive mask parameters
to accommodate various noise conditions.

M(τ, k) = g(SNRTF (τ, k)) (2)

=
1

1 + exp(−α(k) · (SNRTF (τ, k) − β(τ)))

where α(k) and β(τ) adjust the slope and bias of sigmoid
function, respectively.

Fig.2 expresses sigmoidal output, M(τ, k), when α(k)
and local SNR values are varied while β(τ) is fixed at 5.0.
The sigmoidal slope, α(k), determines the compression ratio
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Fig. 2. Sigmoidal output is plotted when the slope(α(k)) has
dynamic range [0.5, 5.0] and number of FFT points is 512.
Bias(β(τ)) is fixed at 5.0.

of difference between local T-F unit SNR, SNRTF (τ, k), and
frame SNR, β(τ). Since high frequency components(above
3KHz) of speech have relatively low energies and are sus-
ceptible to noises, the local T-F SNR in the high frequency
region is considered unreliable. Therefore, α is designed to
be inversely proportional to the frequency index,k. It is desir-
able for the mask filter to have small dynamic ranges in the
high frequency region than low frequency region.

α(k) depends on a frequency index as

α(k) =
σ2

km
(3)

where α(k) ∈ [σ1, σ2], σ1 ,and σ2 are the lower bound and
upper bound of α, respectively. m = log(σ2/σ1)

log(NFFT/2) indicates a
smoothing parameter which is automatically set by the num-
ber of FFT points(NFFT ), lower and upper bounds.

β(τ) changes with frame index,τ , incorporating frame-
by-frame energy variations as

β(τ) = λ1(
∑

∀k ‖Z(τ, k)‖
∑

∀k ‖Y (τ, k)‖ +
∑

∀k ‖Z(τ, k)‖ ) + λ2 (4)

where β(τ) ∈ [λ2, λ1 + λ2] and both λ1 and λ2 are two vari-
ables for determining bounds of β(τ).

When the noise is dominant in the current frame, β(τ)
becomes high and thus low values are assigned to the M(τ, k)
for the wide range of local T-F SNR, i.e., SNRTF (τ, k). It
can be inferred that the local T-F SNR competes with β(τ).

The estimated mask filter can be multiplied with the
dominant-speech spectrum as given below

O(τ, k) = M(τ, k) · Y (τ, k) (5)

where O(τ, k) is the resulting signal, from which inverse
STFT be applied to reproduce the time-domain enhanced
speech, O(t).
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3. EXPERIMENTAL RESULTS

To verify the performance of the proposed adaptive soft mask
filter, we measured SNR and PESQ values over dual-channel
noisy mixture signals.
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Fig. 3. Experimental setup. Data is collected in an ane-
choic room. Dual-channel recorded clean and noise signals
are mixed together to produce noisy mixtures with varying
SNRs.

Fig.3 denotes the configuration to collect experimental
data. In this configuration, we placed dual microphones at
the center, a loudspeaker for playing target speech above the
microphones with a distance of 30cm, and six loudspeakers
for the noises around the microphones with 100cm apart.
Each loudspeaker around the microphones simultaneously
played with different noise sources of music, car noise, sub-
way noise, Korean male voice, Korean female voice, and
English male voice. We separately recorded clean speech and
interfering noises. Then, we mixed them together in order to
get noisy mixture signals with varying SNR from −3dB to
21dB.

Fig.4 shows the spectrograms of several dual-channel
speech enhancement algorithms. The signal processed with
Griffiths-Jim type beamformer(G-J BF) utilizes a VAD(voice
activity detector) information which is precomputed from
clean speech. In order to reduce speech distortion, the filter
weights are only updated when the VAD signal indicates that
the current sample belongs to noise parts[8, 9]. The length
of FIR filter used in the adaptive noise cancelling is 64 and
normalized LMS algorithm is used for the weight update.
G-J BF can effectively suppress the noise components over
2KHz∼3KHz seen in the noise-corrupted input signal, Fig.4
(b). However, non-stationary noise is not removed and thus
its interfering harmonic components in about 2sec region,
clearly remains in the resulting signal.

The signal processed with the phase-error based fil-
ter(PBF) proposed by Aarabi[2] is shown in Fig.4 . In this
case, γ=5 is used throughout the experiments as in the [2].
The pbf processing can suppress interfering noises more than
G-J BF processing with VAD as shown in Fig.4 (d).

The spectrograms processed by the proposed soft mask
filters are given in the Fig.4 (e) and (f). As for the fixed pa-
rameters in the Fig.4 (e), we used α=0.5, β=5.0. It can be

noticed that interfering harmonic components existing about
2sec region, are surely disappeared so that target speech is rel-
atively emphasized, which results in better enhanced signal.
As illustrated in the Fig.4(f), adaptive processing of the soft
mask filter further suppresses noise as well as retains clean
speech at high frequency region so that speech distortion is
diminished.

Fig.5 and 6 illustrate improvements in SNR and PESQ
measure. Fig.5 denotes input SNR vs. output SNR, where
the inter-microphone distance is 1cm (a), 3cm (b), respec-
tively. Fig.6 gives input SNR vs. output PESQ values, where
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(a) SNR with 1cm inter-mic.

−3dB 0dB 3dB 6dB 9dB 12dB 15dB 18dB 21dB
−5

0

5

10

15

20

25

30

35

input SNR

ou
tp

ut
 S

N
R

noisy−input
G−J BF
pbf(γ=5)
mask−fix
mask−adap

(b) SNR with 3cm inter-mic.

Fig. 5. SNR improvements. Figures denote input SNR vs.
output SNR where the inter-microphone distance is 1cm (a),
3cm (b), respectively.

the inter-microphone distance is 1cm (a), 3cm (b), respec-
tively. For the 1cm inter-microphone distance case, G-J BF
algorithm with VAD gives consistently high values with the
PBF, however, low results when the inter-mic distance is 3cm.
The low performance in the PBF-processing with 1cm inter-
microphone distance indicates that the phase information may
not be sufficient and even give negative effect when noisy
mixtures collected from a closely-spaced microphone pair are
highly correlated each other. On the other hand, our local T-F
SNR based adaptive soft mask filter gives higher SNR than
other methods even where inter-microphone distance is only
1cm.
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(a) PESQ with 1cm inter-mic.
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Fig. 6. PESQ improvements. Figures denote input SNR vs.
output PESQ where the inter-microphone distance is 1cm (a)
and 3cm (b), respectively.

The adaptive soft mask has improvements in PESQ values
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Fig. 4. signal spectrograms. Noisy input has 9dB SNR and inter-microphone distance is 3cm. (a) clean speech signal, (b) noise-
corrupted input signal, (c) signal processed with G-J BF with VAD, (d) signal processed with phase-error based filter(pbf) , (e)
signal with fixed soft mask filter and (f) signal with adaptive soft mask filter are shown.

over noisy mixtures about 0.3∼0.6. Signal processed with the
fixed mask filter gives lower PESQ improvements than the the
adaptive mask filter about 0.2. It can be said that adaptive
mask filter reduces speech distortion caused by both musi-
cal noises and over-subtracted high-frequency speech compo-
nents, even without explicit VAD information.

4. CONCLUSIONS

In this paper, we introduced adaptive slope and bias for the
sigmoidal soft mask filter. The adaptive slope depends on
a frequency index and the bias is dependent on a frame in-
dex associated with frame-by-frame magnitude ratios. We
tested the proposed mask filter with enhancement problems
for recovering clean speech from noisy mixtures. For signals
processed with the proposed algorithms, estimated SNR and
PESQ values outperformed the conventional G-J beamformer
with VAD and the phase-error based mask filter method even
in a closely spaced microphone pair.
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