
EFFICIENT SPEECH INDEXING AND SEARCH FOR EMBEDDED DEVICES USING
UNITERMS

Changxue Ma and Woojay Jeon

Applied Research and Technology Center
Motorola, Inc.

Schaumburg, IL, U.S.A.

ABSTRACT
In this paper, we present an efficient method of speech in-
dexing and search using phoneme sequences called uniterms.
In the indexing stage, a collection of uniterms and uniterm
sequences is extracted from the target speech database by ap-
plying statistical scoring to each data item’s phoneme lattice.
In the search stage, each speech query’s phoneme lattice is
used to select candidate uniterms from the collection. These
uniterms are applied in a speech recognition engine to convert
the speech query into a uniterm lattice, from which we obtain
a set of candidate uniterm sequences, each of which can be
mapped to a search result item. Not only is this method a sig-
nificant improvement over previous phoneme-based methods,
it is shown that explicit sequential comparison of uniterms
in query and target data can be avoided using the proposed
method without loss of search performance. Avoiding se-
quential comparison allows better handling of transposition
of words, and for the case where queries have word orders
different from their intended targets, the proposed method can
potentially bring about significant improvement.

Index Terms— speech indexing, speech search

1. INTRODUCTION

Embedded devices are ever increasing in functionality and
stored content, creating demand for more advanced and inno-
vative interaction methods. Speech-based search is a natural
way for people to retrieve content such as personal contacts,
photos, videos, and voice mail, as well as weather forecasts,
news, and device-specific commands and bookmarks.

The purpose of speech search is to identify speech seg-
ments in a database that putatively match a given speech
query. While one could achieve this by using automatic
speech recognition (ASR) to convert speech to text and then
applying text search, there is much interest in directly search-
ing over phonemic lattice transcriptions, rather than words or
sentences, in a vocabulary-independent, content-independent
manner [1]. This “sememeless” method can be more appro-
priate for efficiently searching arbitrary, spontaneous speech
containing unknown vocabulary without requiring accurate

ASR. It is ever more feasible in resource-limited embed-
ded devices that must practically handle all sorts of names,
places, and foreign terms that cannot be easily covered by a
phonemic dictionary.

For robust phoneme-based indexing of conversational
speech, past studies have used multiple phoneme hypothe-
ses rather than best paths to compare query with target [2, 1].
More precise comparison algorithms have also been proposed
[3], but phonemic lattices still suffer from high phoneme
recognition error rates as well as the loss of context infor-
mation. A general method for indexing weighted automata
has also been shown to give results comparative to subword
methods [4]. One limitation of phoneme-based indexing and
sequential matching is that it requires word sequences in
queries to be more or less identical to those of their intended
targets. However, a query such as “I went to San Francisco
yesterday” should be regarded the same as “Yesterday, I went
to San Francisco” in a practical speech search system.

Recently, we showed that speech indexing and search can
be made more robust by lumping phoneme sequences into
more discriminative units called “uniterms,” [5]. In this pa-
per, we exploit uniterms further by noting that they allow
more flexible matching techniques which can better handle
word order problems. We employ a statistical scoring method
that uses local conditional probabilities between consecutive
uniterms, instead of matching whole sequences via dynamic
programming, thereby alleviating errors with “out-of-order”
queries (word order different from intended target). With “in-
order” queries (word order coincides with intended target),
we show that there is no performance loss when using the
proposed method. At the same time, we continue to maintain
vocabulary-independence and content-independence because
the uniterms are data driven. Our method is also computa-
tionally efficient and therefore suitable for application in em-
bedded devices.

2. UNITERM-BASED INDEXING

The first step in the proposed method is to extract a set of
uniterms and uniterm sequences from the target database.

1297978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

Target database

1
:
t
:
T

a
b

c

c

e

a

b

Phoneme lattice for item t

Uniterm set Ut

A B �

C A
�

 : :

Uniterm sequence
set St

b
a

f

c
b

b

a

Uniterm set U, uniterm sequence set S

c

A (a b a)
�

B (b a c)
�

C (c b c)
�

 : :

Fig. 1. Schematic of data indexing process. For the t-th target
data item, a phoneme recognizer generates a phoneme (low-
ercase letters) lattice, from which a set Ut of uniterms (up-
percase letters) is extracted. Uniterms with high scores are
used to create a set St of uniterm sequences. U1, · · · , UT and
S1, · · · , ST are consolidated into uniterm set U and uniterm
sequence set S, respectively. “×” represents arbitrary scores.

Fig.1 shows the overall stages. From each speech recording
item in the database, a phoneme lattice is created using an
automatic speech recognizer with a phoneme loop grammar.
From all paths in the lattice, all possible phoneme sequences
of a fixed length (3 in the example) are extracted to create a
list of uniterms. While a large number of phoneme strings
can be extracted from a typical phoneme lattice, many can be
erroneous or have little discriminative information. To extract
those that are reliable, we apply a simple method of statistical
scoring to find the strings that occur most frequently. To
extract those that are discriminative, we make each uniterm
long enough to contain a sufficient number of phonemes.

For a uniterm u = (x1, x2, · · · , xM) consisting of M

phonemes x1, x2, · · · , xM , we define a score representing
how likely the uniterm lies in a given phoneme lattice L, as

S(u) =
1

M
log p (x1, · · · , xM | L) + f (M) (1)

The conditional probability represents how likely the
phoneme string x1, · · · , xM occurs in phoneme lattice L, and
the log probability is divided by M to normalize for length. A
heuristic function f(M) is also added to penalize short strings
because longer strings are seen to be more discriminative. For
example, f (M) = b log (M) where b = 0.02.

Since it is hard to estimate the conditional probability in
(1), we approximate it using N -gram probabilities:

p (x1, · · · , xM | L) =

M∏
i=1

p (xi|x1, · · · , xi−1,L)

≈

M∏
i=1

p (xi|xi−N+1, · · · , xi−1,L) (2)

The N -gram conditional probability p(xi|xi−N+1, · · · ,

xi−1,L) represents the probability of a phoneme occurring
given N −1 previously seen phonemes in L. Setting N = M

would yield the most accurate computation of (2), but it is
hard to reliably estimate the probabilities for large values of
N , so we use some lower value. The simplest case of N = 1
uses only unigrams p (xi| L), while higher values can use
more context via bigrams (N = 2), p (xi|xi−1,L), or tri-
grams (N = 3), p (xi|xi−1, xi−2,L).

The N -gram probabilities are estimated by counting the
occurrence of phoneme sequences in all possible paths in L.
To compensate for data sparsity, smoothing techniques are
used to improve the measurements. For example,

p (xi |xi−1, xi−2) = αp̂ (xi |xi−1, xi−2) +

βp̂ (xi |xi−1) + γp̂ (xi) + ε (3)

where α, β, γ, and ε are empirical constants under the con-
straint α + β + γ + ε = 1.

After keeping only those uniterms that exceed some score
threshold, a set of uniterm sequences is obtained by substi-
tuting uniterms for the paths in the phoneme lattice. The
uniterms and uniterm sequences extracted from all data items
are consolidated into a universal uniterm set U and uniterm
sequence set S. An inverted index ensures that each item in S

can be mapped to one or more target data items that contain
the uniterm sequence.

3. UNITERM-BASED SEARCH

3.1. Selection of uniterms from a phoneme lattice

We now show how a search query is processed and matched
against the target database. Fig.2 shows the overall search
process. As we did for the target data items, a phoneme recog-
nizer is used to convert a speech query into a phoneme lattice.
Using the lattice, an initial set of uniterms L1 is selected from
the universal uniterm set U by scoring each uniterm accord-
ing to the N -gram method described in Sec.2 and retaining
only those uniterms whose scores exceed some threshold.

In the next stage, the set of uniterms extracted from the
previous step in Sec.3.1 is further refined. Phoneme-level dy-
namic programming is used to measure the similarity between
each uniterm and the best path of the phoneme lattice from
which it was derived. Since each uniterm constitutes only a
subset of the phoneme lattice, there will be insertion errors be-

1298

Initial uniterm set
L1 ⊂ U

A (a b a) �

D (a b f) �

B (b a c) �

C (c b c) �

 : :

Phoneme lattice

ASR
Engine

Uniterm lattice

ASR
Engine

Phoneme loop

C A �

D A C �

C E C �

 : :

Uniterm sequence set L3 ⊂ S
Uniterm loop

Search
Results

Speech
query

a b
c

a

e b
b

b c ab

A

D

C

C

E

A
A A

C

Refined uniterm set
L2 ⊂ U

A �

D �

C �

 : :b f

c
c c

Fig. 2. Schematic of data search process. Using the query phoneme lattice, a set of uniterms is selected from the universal set U

via statistical scoring and then refined via dynamic programming. The set of uniterms L2 is used with the ASR engine to obtain
a uniterm lattice, which is then used to select a set L3 of uniterm sequences from the universal set S. Each sequence can be
mapped to one or more target database items to obtain the final search results. The lattices in the figure are arbitrary examples.

fore or after the uniterm. If all uniterms are the same length,
however, this becomes a constant bias that can be ignored.

Phoneme duration and score (log of the phoneme’s con-
ditional probability) are incorporated in the calculation of the
cost function for the dynamic programming. The cost V of a
path from the start node at time t0 to end node at time t1 is

V =
∑

k

l (k, t0, t1) (4)

where l (k, t0, t1) denotes the cost function of the k-th edge
(phoneme) in the path, defined as

l (k, t0, t1) = max

⎧⎪⎪⎨
⎪⎪⎩

sk · const a (equal)
(t1 − t0) · const b (substitution)

const c (insertion)
const c (deletion)

(5)
Here, sk is the score of the kth phoneme and const a,
const b, and const c are empirical scaling factors. In our
experiments, we choose 1/5, -100, and -3000, respectively.
Higher cost indicates greater similarity.

3.2. Fine search using uniterm lattices

In the final stage, a variety of search strategies are possible us-
ing the refined list of candidate uniterms and scores. The list
itself may already be considered a “coarse search” result, and
an inverted index can be used to retrieve the database items
containing the uniterms with high scores. A more effective
method is to apply speech recognition once again to the utter-
ance, but this time using the selected uniterms as components
of a loop grammar to obtain a uniterm lattice L′. Using L′,
we can select a set of uniterm sequences from the universal

6 7 8 9 10
66

68

70

72

Uniterm Length (Number of Phonemes)

To
p

20
 In

cl
us

io
n

R
at

e

Fig. 3. Inclusion rate (recall) of coarse search for n = 20 in
equation (6) as a function of phoneme string length

set S by computing smoothed trigram conditional probabili-
ties p (ui|ui−1,ui−2,L

′) in a manner similar to Sec.2, where
ui is a uniterm. Since each uniterm sequence can be imme-
diately mapped to one or more target data items that contain
the sequence, the sequences with high scores give us our final
“fine search” results.

4. EXPERIMENT AND DISCUSSION

We use the ETSI advanced frontend standard for distributed
speech recognition, which generates feature vectors of 39 di-
mensions per frame (12 MFCC plus energy, delta, and ac-
celeration coefficients). The speech recognizer is MLite++, a
Motorola proprietary HMM-based ASR engine for embedded
platforms. The engine uses both context-independent (CI)
and context-dependent (CD) subword HMMs trained on a
large speaker-independent American English database. From
each utterance, around 50 uniterms, each with a fixed length

1299

0 10 20 30 40 50
50

60

70

80

90

100

Number of Search Results

In
cl

us
io

n
R

at
e

(R
ec

al
l)

Previous Phoneme−Based Method
Previous Uniterm−Based Method
Proposed Uniterm−Based Method

Fig. 4. Results of fine search (with “in-order” queries) for
varying number of search results n in equation (6). The pro-
posed unitem-based method has similar performance com-
pared to the previous uniterm-based method and significantly
better performance than the phoneme-based method.

of 8 phonemes, are extracted.
Experiments were carried out on an audio database con-

sisting of 1,156 utterances from six speakers. The content text
is chosen from a wide range of song titles. For each utterance
in the database, two to three other utterances have identical
content but are from different speakers. The system perfor-
mance is measured by how well the system, given an utter-
ance from the database as a query, can match this utterance to
the other utterances with identical content. The experimen-
tal setup conducted for this paper was identical to that of the
previous study [5], with the word orders of queries coinciding
with the word orders of intended targets.

The inclusion rate (recall rate) is defined as

Inclusion Rate =
TPn

TPn + FNn

(6)

where TPn stands for the number of true positives, FNn

stands for the number of false negatives, and n denotes the
number of search results returned.

Fig.3 shows the inclusion rate for the coarse search
with varying uniterm length and n = 20. As previously
mentioned[5], long uniterms (like long queries in text search)
can provide more discriminative power in general, but can
also cause relevant results to be missed: first, because they
can make the system more vulnerable to phoneme recognition
errors, and second, because they can become too narrow in
scope and do not generalize well. In Fig.3, the performance
improves linearly from length 6 to 8, but plateaus around
9 and 10 for our test data set. For even longer lengths, we
expect the performance to drop. Also note that uniterms do
not necessarily need to be shorter than the average word (5

or 6 phonemes) because partial matches are possible when
performing uniterm recognition in the fine search stage.

Fig.4 shows the inclusion rate for varying values of n

and fixed uniterm length. Consistent with previous findings
[5], the uniterm-based methods perform significantly better
than the phoneme-based method. We also see that there is
no degradation of performance when we apply the proposed
method in this experiment, where the word order of queries
are consistent with those of the intended targets, compared
to the previous uniterm-based method that relied on explicit
sequential matching via dynamic programming. At the same
time, preliminary experiments using queries with out-of-order
words have indicated a significant increase in performance
when using the proposed method.

5. CONCLUSION AND FUTUREWORK

In this paper we presented a speech indexing and search
scheme for the fast retrieval of speech segments on embed-
ded devices using phoneme sequences called uniterms. By
using uniterms, we showed that speech search performance
can be significantly improved over previous phoneme-based
methods. Furthermore, by applying a combination of dy-
namic programming and statistical scoring, we showed that
explicit sequential comparison of subword lattice paths via
dynamic programming can be avoided without loss of search
performance. This is encouraging because for the case where
speech queries contain word orders different from their in-
tended targets, this will make the new matching method
significantly more effective. Extensive experimental results
for this case scenario will be reported in the future.

6. REFERENCES

[1] D. A. James and S. J. Young, “A fast lattice-based
approach to vocabulary independent wordspotting,” in
IEEE Int. Conf. Acoust., Speech. Signal Processing,
1994.

[2] K. Ng and V. W. Zue, “Subword-based approaches for
spoken document retrieval,” Speech Communication, vol.
32, no. 3, pp. 157–186, 2000.

[3] O. Siohan and M. Bacchiani, “Fast vocabulary-
independent audio search using path-based graph index,”
in Proc. INTERSPEECH, 2005.

[4] C. Allauzen, M. Mohri, and M. Saraclar, “General in-
dexation of weighted automata – application to spoken
utterance retrieval,” in Proc. HLT/NAACL, 2004, pp. 33–
40.

[5] C. Ma, “Uniterm voice indexing and search for mobile
devices,” in IEEE Int. Workshop on Multimedia Analysis
and Proc., 2008.

1300

