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ABSTRACT

In image stitching applications, it is very important to find a suitable
warping function for the visual quality of a composite (stitching re-
sult). In this paper, we present a new mathematical criterion to select
an optimal warping function among a set of possible candidates (e.g.,
parametric family). The proposed criterion can be considered as a
direct view condition for image stitching , i.e., it is desirable that each
part of the composite image looks like its corresponding input image.
More specifically, we do not use an explicit modeling of a composit-
ing surface, but, we focus on the differential properties of a warping
function. That is we design a cost function so that the Jacobian ma-
trix of a warping function is close to a shape preserving matrix such
as rotation and reflection matrices. The proposed cost function can
be effectively minimized by using Levenberg-Marquardt algorithm.
The experimental results show that the proposed method results in
visually pleasing stitched results because the original shape of each
image is preserved in the composite.

Index Terms— Image Stitching, Panorama

1. INTRODUCTION

Image stitching is a process to generate a larger and high-resolution
composite from multiple images. Recently, it is gaining much at-
tention because it can overcome the limited resolution and the small
field-of-view of hand-held cameras and it can also create beautiful
high-resolution panoramas [1, 2, 4, 6]. Among several issues to cre-
ate a visually pleasing panorama such as image registration, blend-
ing and so on, we address the issue on how to get a warping function
(or in previous literatures, how to select a type of surface and the
placement of the surface around the viewing sphere) that transforms
a source image to a part of a composite. Finding an appropriate
warping function is an important problem because a geometrically
and photometrically correct panorama can be perceptually incorrect
as shown in the examples of Fig. 2-(b) and Fig. 3-(b).

Panoramas can be constructed if there is no (or little) parallax
between images, which occurs when capturing scenes with a fixed
optical center [1, 2, 6] or capturing the plane scene [10]. In the case
of rotating a camera about its optical center, pictures taken by the
camera cover a viewing sphere. Hence the problem to this case is
how to project the sphere into flat image with less distortion. A
typical approach to this problem is to assume a surface around the
viewing sphere and to project the viewing sphere onto the surface by
imagining rays from the center of the sphere to the surface. In this
step, the surface is usually flat or cylindrical. For example, when
only a few images are stitched, one of them is selected as a refer-
ence plane and other images are transformed to the reference plane
[1, 4]. In Autostitch which is a fully-automatic image stitching sys-
tem [2, 11], a cylindrical surface is used. However, even if we se-

lect an appropriate surface (plane, cylinder or cube), there remains
a problem about where the surface should be placed. For example,
we should determine which image is used for the reference in lin-
ear perspective panorama. Also when the cylindrical surface is used,
the up-vector of cylinder should be determined. Although there is
some heuristic approach to choose the up-vector in [3], there is no
universal rule to select a surface and its placement [7]. Hence the
most automated approach uses a fixed surface and employs heuristics
to place the surface around the viewing sphere. A similar problem
arises when capturing a plane scene, which is the second case that
image stitching is possible. In this case a plane is a natural choice for
a composite. However, which plane results in the most natural com-
posite is still a problem, because images are captured obliquely (it
requires much user’s effort to capture the scene perfectly perpendic-
ular) to the scene plane in practice, and thus using one of them as a
reference plane results in the accumulated distortions as the number
of images increase (see Fig. 3-(b)).

It is already noted that the right choice of a surface and its place-
ment depend on the input images: the surface should be selected
based on the tradeoff between (1) keeping the local appearance
undistorted (a straight line should be straight) and (2) providing
a reasonably uniform sampling [4]. Interestingly, similar condi-
tions are already introduced in computer graphics literature (image
synthesis) [9]. Because a geometrically correct image is not al-
ways perceptually pleasing, the authors of [9] proposed a correcting
method of (perceptually) distorted images. For this, they proposed
two conditions: zero-curvature condition and direct view condition,
where the former is measured by computing the maximum curvature
which can be introduced by warping a straight line and the latter
means that it is desirable that each object looks like as if it is at
the center of an image (or equivalently, circles should be preserved
rather than be warped to be an ellipse).

In order to alleviate the above stated problem, we propose a new
approach based on functional minimization. In other words, we do
not imagine the surface and its placement, but, we focus on a warp-
ing function that results in a natural composite. For this, it is believed
that the direct view condition which is similar to relatively uniform
sampling can be a good criterion. Hence we propose a kind of direct
view condition which can handle multiple images and automate the
selection of warping function. Specifically, the proposed condition
can be stated as follows: it is desirable that each part of the compos-
ite image looks like its original input image. Also, in order to encode
this condition into a sound mathematical formulation, we consider
differential properties of a warping function. By considering Jaco-
bian matrix J ∈ �2×2 of a warping function, we can handle the local
distortions quantitatively. The formulation is based on the properties
of singular values of J and it is expressed by the sum of a small
number of square functions, which enables us to use an effective
optimization method based on Levenberg-Marquardt algorithm [1].
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The proposed method have been applied to two cases in this paper:
a panorama obtained by rotating a camera and a panorama captur-
ing a plane scene. The experimental results show that the proposed
method generates a visually better composite because the original
shape of each image is preserved in the composite.

2. PROPOSED ALGORITHM

In this section, we will explain the proposed cost function which
measures distortions caused by image stitching. For this, we will
firstly define the cost function for a single warped image, and then
we approximate the cost function to a more mathematically tractable
one. Finally we define a cost function which results in a perceptually
correct panorama.

2.1. Distortions introduced by Warping

We assume that an image I is transformed by a warping function
T : �2 → �2. If we denote T (x, y) = (φ(x, y), ψ(x, y)), the
Jacobian JT (x, y) of the warping function is given by

JT (x, y) =

(
∂

∂x
φ(x, y) ∂

∂y
φ(x, y)

∂
∂x

ψ(x, y) ∂
∂y

ψ(x, y)

)
. (1)

Because the Jacobian is an approximation of the warping function
to a linear transform (affine transform), we can have the information
on the local distortions such as scale change, aspect ratio change
and skew. Among many tools for the matrix analysis, SVD (singular
value decomposition) of the matrix gives an easy way to estimate the
perceptual distortions [8]. The SVD decomposes JT (x, y) into

JT (x, y) = U(x, y) Σ(x, y) V (x, y)T (2)

whereU(x, y) and V (x, y) ∈ �2×2 are rotations and reflections and
Σ(x, y) is given by

Σ(x, y) =

(
σ1

T (x, y) 0
0 σ2

T (x, y)

)
. (3)

Because rotations and reflections do not introduce perceptual distor-
tions, we can see the amount of local distortions is a function of two
singular values σ1

T (x, y) and σ2
T (x, y). Actually, Σ(x, y) is called a

stretch matrix and σ1
T (x, y) and σ2

T (x, y) mean maximum and min-
imum local stretch respectively:

σ1
T (x, y) = max

|JT (x, y) v|
|v| (4)

σ2
T (x, y) = min

|JT (x, y) v|
|v| . (5)

Because the transformed image looks like its source image (also in
size) only if σ1

T (x, y) � 1 and σ2
T (x, y) � 1, we design the cost

function so that σ1
T (x, y) and σ2

T (x, y) are close to unity. In other
words, the distortion costE(T ; I)which is introduced by transform-
ing I with T is defined as a maximum local distortions:

E(T ; I) = max
(x,y)∈D(I) i=1,2

f(σi
T (x, y)) (6)

whereD(I) is the domain on which I is defined and f(σ) is defined
so that same amount of cost is imposed to stretch and contraction:

f(σ) = max

(
|σ − 1| ,

∣∣∣∣ 1

σ
− 1

∣∣∣∣
)

. (7)

Fig. 1. Illustration of the notations of the proposed algorithm. I1

and I2 denote input images. They are transformed by F1 and F2 and
aligned in some intermediate surface. In that surface, some image
may seem too stretched or contracted. In order to correct them, we
find an optimal mapping Tθ that each transformed image looks like
the input picture.

Although the cost function is intuitive and well-defined (it mini-
mizes a maximum singular value derivation), we approximate the
cost function to more computationally efficient one. First, we sub-
stitute a set of a few control points C(I) for the domain of an image
I . Second we approximate l∞-norm to l2-norm due to the simplicity
of minimization and the satisfactory performance of l2-norm. Such
approximations result in a simplified cost Esim(T ; I):

Esim(T ; I) =
1

2|C(I)|
∑

(x,y)∈C(I)

fsim(σ1
T (x, y))+fsim(σ2

T (x, y))

(8)
where |·| is the cardinality of a set and fsim(σ) is defined to measure
the deviation from one, i.e.,

fsim(σ) = (σ − 1)2 +

(
1

σ
− 1

)2

. (9)

2.2. Multiple Images Case

For applying the proposed distortion measure to multiple image
stitching problem, let us assume that n images (I1, I2, · · · , In) are
given and they are registered (stitched) on some intermediate surface
S. It can be done by using conventional image registration methods
such as [1, 2, 4]. Specifically, we have used the method in [2] for
the construction of a single viewpoint panorama such as Fig. 2 and
the method in [1] has been used for the registration of planar scene
such as Fig. 3. We denote a warping function that transforms Ii to
an intermediate surface as Fi : �2 → �2. After transforming each
image by Fi, we can get a geometrically correct composite on S.
However, the perceptual distortions of image on S depends on the
choice of S and the composite usually suffers from distortions. In
order to correct such distortions, the image on S should be warped
by some warping function. We denote a parametric family of warp-
ing functions as Tθ : �2 → �2 where θ is a set of parameters
that controls the transform. Then, we can get the warping func-
tion that transforms a domain of Ii to the final composite plane by
concatenating Tθ and Fi. This procedure is illustrated in Fig. 1.

We assume that the amount of overall distortions caused by im-
age stitching is the sum of distortions caused by transforming each
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(a)

(b)

(c)

Fig. 2. Image stitching result on images which capture a scene by
rotating a camera (a) Four inputs of a single viewpoint panorama (b)
Image stitching result using one of inputs as a reference (c) Image
stitching result using the proposed method

image by Tθ ◦ Fi. Therefore, we define a cost function E(θ) and
find the optimal parameter θ̂ by minimizing the function, i.e.,

θ̂ = arg min E(θ) (10)

where E(θ) is defined as

E(θ) =
n∑

i=1

Esim(Tθ ◦ Fi; Ii). (11)

E(θ) consists of 2 × ∑n
i=1 |C(Ii)| square functions and the op-

timization can be done using Levenberg-Marquardt algorithm [1].
Finally, by warping each image Ii (i = 1, 2, · · · , n) using Tθ̂ ◦ Fi,
we can get a composite.

3. EXPERIMENTAL RESULTS

Although the proposed direction view condition can be applied to
any kind of a differentiable warping function Tθ ◦ Fi, it is another
problem to achieve a perceptual balance between the zero-curvature
condition and the proposed direct view condition [9]. Even if we
have a quantitative measure of zero-curvature condition, (for exam-
ple, a maximum curvature of a warped straight line can be an an-
swer), how to combine semantically different two cost function still

remains as a problem. Hence we have applied the proposed method
to simple cases where zero curvature condition is perfectly satisfied.
In other words, we consider the case that Tθ and Fi are 2-D planar
homography. Such a situation occurs in two cases: a linear perspec-
tive panorama and stitching images which capture a planar scene.

3.1. Implementation Details

After capturing the scene, we use the software in [15] to remove ra-
dial distortions. We denote radial distortion free images as I1, I2,
· · · , In. Then we compute the pairwise homography between im-
ages. For this a SIFT descriptor and RANSAC (RANdom SAmple
Consensus) algorithm are used. Then the geometrical error mini-
mization using Levenberg-Marquardt algorithm is followed [1, 14,
13]. In selecting an intermediate plane S, we use the first image as
a reference. Therefore, F1 is an identity and Fi is defined as a ho-
mography that transforms Ii to the plane of I1. The family of Tθ is
defined as

Tθ(x, y) =

(
h1x + h2y + h3

h7x + h8y + h9
,
h4x + h5y + h6

h7x + h8y + h9

)
(12)

where θ = (h1, h2, · · · , h9) ∈ �9.
In experiments, we use a set of four corner points of I asC(I) so

that E(θ) consists of 8 × n square functions. Levenberg-Marquardt
algorithm implementation in [12] is used with a closed form solution
of singular values, i.e.,

σ1
T (x, y) =

√
1

2

(
(E + G) +

√
(E − G)2 + 4F 2

)
(13)

σ2
T (x, y) =

√
1

2

(
(E + G) −

√
(E − G)2 + 4F 2

)
(14)

where E = φ2
x + ψ2

x, F = φxφy + ψxψy and G = φ2
y + ψ2

y [9].

3.2. Experimental Results

Experimental results on the images taken by rotating a camera about
its optical center is shown in Fig. 2. As can be seen in Fig. 2-(a),(b),
none of four inputs can be a good reference plane (if any, it requires
user interaction). The proposed method finds an optimal view of the
scene automatically and results in Fig. 2-(c). Another example is
shown in Fig. 3. It is a result on images capturing a planar scene.
If there is an image which is taken perfectly perpendicular to the
scene, it is a good choice to use the image as a reference, although it
requires much user attention in taking the pictures and also the user
interaction in image stitching. However, the proposed method results
in a visually pleasing result with less attention in taking pictures (it is
sufficient to capture the plane scene approximately perpendicularly)
and no user interaction is required in image stitching.

4. CONCLUSIONS AND FUTUREWORKS

In this paper, we consider the problem of image stitching as a prob-
lem to find a good warping function. In order to find an optimal func-
tion for this purpose, we have presented a new direct view condition,
which is derived from the observation that the best view of the object
in a composite is to view the object as if they appear in a source im-
age. Precisely, the condition is formulated as a minimization prob-
lem which consists of the sum of small number of square functions,
which can be effectively minimized using Levenberg-Marquardt al-
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(a) (b)

(c) (d)

Fig. 3. Stitching result of images which capture a planar scene (a) Leftmost image of inputs (it is slightly oblique to the scene). (b) Image
stitching result using the leftmost image as a reference (c) Automatically warped leftmost image so that all other images can be seen less
distorted (d) Image stitching result using the proposed method.

gorithm. The experimental results show that the proposed criterion
provides a better view.

However the warping function Tθ in this paper is quite limited
(2D homography), whereas the family of Tθ can be much wider
class. We think a more natural composite can be obtained in more
complex cases by combining the zero curvature condition with the
proposed condition.
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